File size: 12,299 Bytes
c61ad8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import logging
logging.getLogger('numba').setLevel(logging.WARNING)
logging.getLogger('matplotlib').setLevel(logging.WARNING)
logging.getLogger('urllib3').setLevel(logging.WARNING)
import json
import re
import numpy as np
import IPython.display as ipd
import torch
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import text_to_sequence
import gradio as gr
import time
import datetime
import os
import pickle
import openai
from scipy.io.wavfile import write
def is_japanese(string):
        for ch in string:
            if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
                return True
        return False

def is_english(string):
        import re
        pattern = re.compile('^[A-Za-z0-9.,:;!?()_*"\' ]+$')
        if pattern.fullmatch(string):
            return True
        else:
            return False

def extrac(text):
    text = re.sub("<[^>]*>","",text)
    result_list = re.split(r'\n', text)
    final_list = []
    for i in result_list:
        if is_english(i):
            i = romajitable.to_kana(i).katakana
        i = i.replace('\n','').replace(' ','')
        #Current length of single sentence: 20 
        if len(i)>1:
            if len(i) > 20:
                try:
                    cur_list = re.split(r'。|!', i)
                    for i in cur_list:
                        if len(i)>1:
                            final_list.append(i+'。')
                except:
                    pass
            else:
                final_list.append(i)
    final_list = [x for x in final_list if x != '']
    print(final_list)
    return final_list

def to_numpy(tensor: torch.Tensor):
    return tensor.detach().cpu().numpy() if tensor.requires_grad \
        else tensor.detach().numpy()

def chatgpt(text):
    messages = []
    try:
        if text != 'exist':
            with open('log.pickle', 'rb') as f:
                messages = pickle.load(f)
        messages.append({"role": "user", "content": text},)
        chat = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages)
        reply = chat.choices[0].message.content
        messages.append({"role": "assistant", "content": reply})
        print(messages[-1])
        if len(messages) == 12:
            messages[6:10] = messages[8:]
            del messages[-2:]
        with open('log.pickle', 'wb') as f:
            pickle.dump(messages, f)
        return reply
    except:
        messages.append({"role": "user", "content": text},)
        chat = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages)
        reply = chat.choices[0].message.content
        messages.append({"role": "assistant", "content": reply})
        print(messages[-1])
        if len(messages) == 12:
            messages[6:10] = messages[8:]
            del messages[-2:]
        with open('log.pickle', 'wb') as f:
            pickle.dump(messages, f)
        return reply

def get_symbols_from_json(path):
    assert os.path.isfile(path)
    with open(path, 'r') as f:
        data = json.load(f)
    return data['symbols']

def sle(language,text):
        text = text.replace('\n', ' ').replace('\r', '').replace(" ", "")
        if language == "中文":
            tts_input1 = "[ZH]" + text + "[ZH]"
            return tts_input1
        elif language == "自动":
            tts_input1 = f"[JA]{text}[JA]" if is_japanese(text) else f"[ZH]{text}[ZH]"
            return tts_input1
        elif language == "日文":
            tts_input1 = "[JA]" + text + "[JA]"
            return tts_input1
        elif language == "英文":
            tts_input1 = "[EN]" + text + "[EN]"
            return tts_input1
        elif language == "手动":
            return text

def get_text(text,hps_ms):
    text_norm = text_to_sequence(text,hps_ms.data.text_cleaners)
    if hps_ms.data.add_blank:
        text_norm = commons.intersperse(text_norm, 0)
    text_norm = torch.LongTensor(text_norm)
    return text_norm

def create_tts_fn(net_g,hps,speaker_id):
    speaker_id = int(speaker_id)
    def tts_fn(history,is_gpt,api_key,is_audio,audiopath,repeat_time,text, language, extract, n_scale= 0.667,n_scale_w = 0.8, l_scale = 1 ):
        repeat_time = int(repeat_time)
        if is_gpt:
            openai.api_key = api_key
            text = chatgpt(text)
            history[-1][1] = text
        if not extract:
            print(text)
            t1 = time.time()
            stn_tst = get_text(sle(language,text),hps)
            with torch.no_grad():
                x_tst = stn_tst.unsqueeze(0).to(dev)
                x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(dev)
                sid = torch.LongTensor([speaker_id]).to(dev)
                audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=n_scale, noise_scale_w=n_scale_w, length_scale=l_scale)[0][0,0].data.cpu().float().numpy()
                t2 = time.time()
                spending_time = "推理时间为:"+str(t2-t1)+"s"
                print(spending_time)
                file_path = "subtitles.srt"
            try:
                write(audiopath + '.wav',22050,audio)
                if is_audio:
                    for i in range(repeat_time):
                        cmd = 'ffmpeg -y -i ' +  audiopath + '.wav' + ' -ar 44100 '+ audiopath.replace('temp','temp'+str(i))
                        os.system(cmd)
            except:
                pass
            return history,file_path,(hps.data.sampling_rate,audio)
        else:
            a = ['【','[','(','(']
            b = ['】',']',')',')']
            for i in a:
                text = text.replace(i,'<')
            for i in b:
                text = text.replace(i,'>')
            final_list = extrac(text.replace('“','').replace('”',''))
            audio_fin = []
            c = 0
            t = datetime.timedelta(seconds=0)
            f1 = open("subtitles.srt",'w',encoding='utf-8')
            for sentence in final_list:
                c +=1
                stn_tst = get_text(sle(language,sentence),hps)
                with torch.no_grad():
                    x_tst = stn_tst.unsqueeze(0).to(dev)
                    x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(dev)
                    sid = torch.LongTensor([speaker_id]).to(dev)
                    t1 = time.time()
                    audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=n_scale, noise_scale_w=n_scale_w, length_scale=l_scale)[0][0,0].data.cpu().float().numpy()
                    t2 = time.time()
                    spending_time = "第"+str(c)+"句的推理时间为:"+str(t2-t1)+"s"
                    print(spending_time)
                    time_start = str(t).split(".")[0] + "," + str(t.microseconds)[:3]
                    last_time = datetime.timedelta(seconds=len(audio)/float(22050))
                    t+=last_time
                    time_end = str(t).split(".")[0] + "," + str(t.microseconds)[:3]
                    print(time_end)
                    f1.write(str(c-1)+'\n'+time_start+' --> '+time_end+'\n'+sentence+'\n\n')
                    audio_fin.append(audio)
                try:
                    write(audiopath + '.wav',22050,np.concatenate(audio_fin))
                    if is_audio:
                        for i in range(repeat_time):
                            cmd = 'ffmpeg -y -i ' +  audiopath + '.wav' + ' -ar 44100 '+ audiopath.replace('temp','temp'+str(i))
                            os.system(cmd)
                    
                except:
                    pass
                
            file_path = "subtitles.srt"
            return history,file_path,(hps.data.sampling_rate, np.concatenate(audio_fin))
    return tts_fn

def bot(history,user_message):
    return history + [[user_message, None]]

if __name__ == '__main__':
    hps = utils.get_hparams_from_file('checkpoints/tmp/config.json')
    dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    models = []
    schools = ["Nijigasaki High School","Seisho-Nijigasaki(Recommend)","Seisho Music Academy","Rinmeikan Girls School","Frontier School of Arts","Siegfeld Institute of Music"]
    lan = ["中文","日文","自动","手动"]
    with open("checkpoints/info.json", "r", encoding="utf-8") as f:
        models_info = json.load(f)
    checkpoint = models_info['Seisho Music Academy']["checkpoint"]
    phone_dict = {
        symbol: i for i, symbol in enumerate(symbols)
    }
    net_g = SynthesizerTrn(
        len(symbols),
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        **hps.model).to(dev)
    _ = net_g.eval()
    _ = utils.load_checkpoint(checkpoint, net_g)
    for i in models_info:
        school = models_info[i]
        speakers = school["speakers"]
        content = []
        for j in speakers:
            sid = int(speakers[j]['sid'])
            title = school
            example = speakers[j]['speech']
            name = speakers[j]["name"]
            content.append((sid, name, title, example, create_tts_fn(net_g,hps,sid)))
        models.append(content)
    
    with gr.Blocks() as app:
        with gr.Tabs():
            for i in schools:
                with gr.TabItem(i):
                    for (sid, name,  title, example, tts_fn) in models[schools.index(i)]:
                        with gr.TabItem(name):
                            with gr.Column():
                                with gr.Row():
                                    with gr.Row():
                                        gr.Markdown(
                                            '<div align="center">'
                                            f'<img style="width:auto;height:400px;" src="file/image/{name}.png">' 
                                            '</div>'
                                        )
                                    chatbot = gr.Chatbot()
                                with gr.Row():
                                    with gr.Column(scale=0.85):
                                        input1 = gr.TextArea(label="Text", value=example,lines = 1)    
                                    with gr.Column(scale=0.15, min_width=0):
                                        btnVC = gr.Button("Send")
                                output1 = gr.Audio(label="采样率22050")
                                with gr.Accordion(label="Setting", open=False):
                                    input2 = gr.Dropdown(label="Language", choices=lan, value="自动", interactive=True)
                                    input3 = gr.Checkbox(value=False, label="长句切割(小说合成)")
                                    input4 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.567)
                                    input5 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.7)
                                    input6 = gr.Slider(minimum=0.1, maximum=10, label="duration", value=1) 
                                with gr.Accordion(label="Advanced Setting", open=False):
                                    audio_input3 = gr.Dropdown(label="重复次数", choices=list(range(101)), value='0', interactive=True) 
                                    api_input1 = gr.Checkbox(value=False, label="接入chatgpt")
                                    api_input2 = gr.TextArea(label="api-key",lines=1,value = '见 https://openai.com/blog/openai-api')   
                                    output2 = gr.outputs.File(label="字幕文件:subtitles.srt")
                                    audio_input1 = gr.Checkbox(value=False, label="修改音频路径(live2d)")
                                    audio_input2 = gr.TextArea(label="音频路径",lines=1,value = '#参考 D:/app_develop/live2d_whole/2010002/sounds/temp.wav')
                                 
                        btnVC.click(bot, inputs = [chatbot,input1], outputs = [chatbot]).then(
    tts_fn, inputs=[chatbot,api_input1,api_input2,audio_input1,audio_input2,audio_input3,input1,input2,input3,input4,input5,input6], outputs=[chatbot,output2,output1]
    )
                
    app.launch()