File size: 21,968 Bytes
c61ad8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7aa991
a96dd1f
c7aa991
c61ad8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c297e8
c61ad8a
 
 
 
 
 
 
 
 
c7aa991
 
6c297e8
c61ad8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7aa991
c61ad8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c297e8
c61ad8a
 
 
 
 
 
 
6c297e8
c7aa991
c61ad8a
6c297e8
 
c61ad8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c297e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c61ad8a
 
 
c7aa991
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c61ad8a
c7aa991
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c61ad8a
 
 
 
 
c7aa991
 
c61ad8a
 
 
 
c7aa991
 
 
 
 
 
 
 
 
 
 
 
c61ad8a
 
 
 
 
 
 
 
 
 
c7aa991
c61ad8a
 
c7aa991
c61ad8a
c7aa991
 
 
c61ad8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7aa991
 
c61ad8a
 
 
 
c7aa991
6c297e8
c61ad8a
6c297e8
c7aa991
 
 
6c297e8
 
 
c7aa991
c61ad8a
6c297e8
c61ad8a
c7aa991
6c297e8
c7aa991
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c61ad8a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
import logging
logging.getLogger('numba').setLevel(logging.WARNING)
logging.getLogger('matplotlib').setLevel(logging.WARNING)
logging.getLogger('urllib3').setLevel(logging.WARNING)
import json
import re
import numpy as np
import IPython.display as ipd
import torch
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import text_to_sequence
import gradio as gr
import time
import datetime
import os
import pickle
import openai
from scipy.io.wavfile import write
import librosa
import romajitable
from mel_processing import spectrogram_torch
def is_japanese(string):
        for ch in string:
            if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
                return True
        return False

def is_english(string):
        import re
        pattern = re.compile('^[A-Za-z0-9.,:;!?()_*"\' ]+$')
        if pattern.fullmatch(string):
            return True
        else:
            return False

def extrac(text):
    text = re.sub("<[^>]*>","",text)
    result_list = re.split(r'\n', text)
    final_list = []
    for i in result_list:
        if is_english(i):
            i = romajitable.to_kana(i).katakana
        i = i.replace('\n','').replace(' ','')
        #Current length of single sentence: 20 
        if len(i)>1:
            if len(i) > 50:
                try:
                    cur_list = re.split(r'。|!', i)
                    for i in cur_list:
                        if len(i)>1:
                            final_list.append(i+'。')
                except:
                    pass
            else:
                final_list.append(i)
            '''
        final_list.append(i)
        '''
    final_list = [x for x in final_list if x != '']
    print(final_list)
    return final_list

def to_numpy(tensor: torch.Tensor):
    return tensor.detach().cpu().numpy() if tensor.requires_grad \
        else tensor.detach().numpy()

def chatgpt(text):
    messages = []
    try:
        if text != 'exist':
            with open('log.pickle', 'rb') as f:
                messages = pickle.load(f)
        messages.append({"role": "user", "content": text},)
        chat = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages)
        reply = chat.choices[0].message.content
        messages.append({"role": "assistant", "content": reply})
        print(messages[-1])
        if len(messages) == 12:
            messages[6:10] = messages[8:]
            del messages[-2:]
        with open('log.pickle', 'wb') as f:
            pickle.dump(messages, f)
        return reply
    except:
        messages.append({"role": "user", "content": text},)
        chat = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages)
        reply = chat.choices[0].message.content
        messages.append({"role": "assistant", "content": reply})
        print(messages[-1])
        if len(messages) == 12:
            messages[6:10] = messages[8:]
            del messages[-2:]
        with open('log.pickle', 'wb') as f:
            pickle.dump(messages, f)
        return reply

def get_symbols_from_json(path):
    assert os.path.isfile(path)
    with open(path, 'r') as f:
        data = json.load(f)
    return data['symbols']

def sle(language,text):
        text = text.replace('\n', '').replace('\r', '').replace(" ", "")
        if language == "中文":
            tts_input1 = "[ZH]" + text + "[ZH]"
            return tts_input1
        elif language == "自动":
            tts_input1 = f"[JA]{text}[JA]" if is_japanese(text) else f"[ZH]{text}[ZH]"
            return tts_input1
        elif language == "日文":
            tts_input1 = "[JA]" + text + "[JA]"
            return tts_input1
        elif language == "英文":
            tts_input1 = "[EN]" + text + "[EN]"
            return tts_input1
        elif language == "手动":
            return text

def get_text(text,hps_ms):
    text_norm = text_to_sequence(text,hps_ms.symbols,hps_ms.data.text_cleaners)
    if hps_ms.data.add_blank:
        text_norm = commons.intersperse(text_norm, 0)
    text_norm = torch.LongTensor(text_norm)
    return text_norm

def create_tts_fn(net_g,hps,speaker_id):
    speaker_id = int(speaker_id)
    def tts_fn(is_transfer,original_speaker, target_speaker,history,is_gpt,api_key,is_audio,audiopath,repeat_time,text, language, extract, n_scale= 0.667,n_scale_w = 0.8, l_scale = 1 ):
        text = check_text(text)
        repeat_time = int(repeat_time)
        original_speaker_id = selection(original_speaker)
        target_speaker_id = selection(target_speaker)
        if is_gpt:
            openai.api_key = api_key
            text = chatgpt(text)
            history[-1][1] = text
        if not extract:
            print(text)
            t1 = time.time()
            stn_tst = get_text(sle(language,text),hps)
            with torch.no_grad():
                x_tst = stn_tst.unsqueeze(0).to(dev)
                x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(dev)
                sid = torch.LongTensor([speaker_id]).to(dev)
                audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=n_scale, noise_scale_w=n_scale_w, length_scale=l_scale)[0][0,0].data.cpu().float().numpy()
                t2 = time.time()
                spending_time = "推理时间为:"+str(t2-t1)+"s"
                print(spending_time)
                file_path = "subtitles.srt"
            try:
                write(audiopath + '.wav',22050,audio)
                if is_audio:
                    for i in range(repeat_time):
                        cmd = 'ffmpeg -y -i ' +  audiopath + '.wav' + ' -ar 44100 '+ audiopath.replace('temp','temp'+str(i))
                        os.system(cmd)
            except:
                pass
            return history,file_path,(hps.data.sampling_rate,audio)
        else:
            a = ['【','[','(','(']
            b = ['】',']',')',')']
            for i in a:
                text = text.replace(i,'<')
            for i in b:
                text = text.replace(i,'>')
            final_list = extrac(text.replace('“','').replace('”',''))
            split_list = []
            while len(final_list) > 0:
                split_list.append(final_list[:500])
                final_list = final_list[500:]
            c0 = 0
            for lists in split_list:
                audio_fin = []
                t = datetime.timedelta(seconds=0)
                c = 0
                f1 = open(audiopath.replace('.wav',str(c0)+".srt"),'w',encoding='utf-8')
                for sentence in lists:
                    try:
                        c +=1
                        stn_tst = get_text(sle(language,sentence),hps)
                        with torch.no_grad():
                            x_tst = stn_tst.unsqueeze(0).to(dev)
                            x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(dev)
                            sid = torch.LongTensor([original_speaker_id]).to(dev)
                            t1 = time.time()
                            audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=n_scale, noise_scale_w=n_scale_w, length_scale=l_scale)[0][0,0].data.cpu().float().numpy()
                            t2 = time.time()
                            spending_time = "第"+str(c)+"句的推理时间为:"+str(t2-t1)+"s"
                            print(spending_time)
                            time_start = str(t).split(".")[0] + "," + str(t.microseconds)[:3]
                            last_time = datetime.timedelta(seconds=len(audio)/float(22050))
                            t+=last_time
                            time_end = str(t).split(".")[0] + "," + str(t.microseconds)[:3]
                            print(time_end)
                            f1.write(str(c-1)+'\n'+time_start+' --> '+time_end+'\n'+sentence+'\n\n')
                        if is_transfer:
                            with torch.no_grad():
                                y = torch.FloatTensor(audio)
                                y = y / max(-y.min(), y.max()) / 0.99
                                y = y.to(dev)
                                y = y.unsqueeze(0)
                                spec = spectrogram_torch(y, hps.data.filter_length,
                                                            hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
                                                            center=False).to(dev)
                                spec_lengths = torch.LongTensor([spec.size(-1)]).to(dev)
                                sid_src = torch.LongTensor([original_speaker_id]).to(dev)
                                sid_tgt = torch.LongTensor([target_speaker_id]).to(dev)
                                audio = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][
                                    0, 0].data.cpu().float().numpy()
                            del y, spec, spec_lengths, sid_src, sid_tgt
                        audio_fin.append(audio)
                    except:
                        pass
                write(audiopath.replace('.wav',str(c0)+'.wav'),22050,np.concatenate(audio_fin))
                c0 += 1
            file_path = audiopath.replace('.wav',str(c0)+".srt")
            return history,file_path,(hps.data.sampling_rate, np.concatenate(audio_fin))
    return tts_fn

def create_vc_fn(net_g,hps):
    def vc_fn(text,language,n_scale,n_scale_w,l_scale,original_speaker, target_speaker, record_audio, upload_audio):
        input_audio = record_audio if record_audio is not None else upload_audio
        original_speaker_id = selection(original_speaker)
        target_speaker_id = selection(target_speaker)
        if input_audio is None:
            stn_tst = get_text(sle(language,text),hps)
            with torch.no_grad():
                x_tst = stn_tst.unsqueeze(0).to(dev)
                x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(dev)
                sid = torch.LongTensor([original_speaker_id]).to(dev)
                audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=n_scale, noise_scale_w=n_scale_w, length_scale=l_scale)[0][0,0].data.cpu().float().numpy()
                sampling_rate = hps.data.sampling_rate
        else:
            sampling_rate, audio = input_audio
            audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
        if len(audio.shape) > 1:
            audio = librosa.to_mono(audio.transpose(1, 0))
        if sampling_rate != hps.data.sampling_rate:
            audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=hps.data.sampling_rate)
        with torch.no_grad():
            y = torch.FloatTensor(audio)
            y = y / max(-y.min(), y.max()) / 0.99
            y = y.to(dev)
            y = y.unsqueeze(0)
            spec = spectrogram_torch(y, hps.data.filter_length,
                                        hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
                                        center=False).to(dev)
            spec_lengths = torch.LongTensor([spec.size(-1)]).to(dev)
            sid_src = torch.LongTensor([original_speaker_id]).to(dev)
            sid_tgt = torch.LongTensor([target_speaker_id]).to(dev)
            audio = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][
                0, 0].data.cpu().float().numpy()
        del y, spec, spec_lengths, sid_src, sid_tgt
        return "Success", (hps.data.sampling_rate, audio)
    return vc_fn

def bot(history,user_message):
    return history + [[check_text(user_message), None]]

def selection(speaker):
    if speaker == "高咲侑":
        spk = 0
        return spk

    elif speaker == "歩夢":
        spk = 1
        return spk

    elif speaker == "かすみ":
        spk = 2
        return spk

    elif speaker == "しずく":
        spk = 3
        return spk

    elif speaker == "果林":
        spk = 4
        return spk

    elif speaker == "愛":
        spk = 5
        return spk

    elif speaker == "彼方":
        spk = 6
        return spk

    elif speaker == "せつ菜":
        spk = 7
        return spk
    
    elif speaker == "エマ":
        spk = 8
        return spk
    
    elif speaker == "璃奈":
        spk = 9
        return spk
    
    elif speaker == "栞子":
        spk = 10
        return spk
    
    elif speaker == "ランジュ":
        spk = 11
        return spk
    
    elif speaker == "ミア":
        spk = 12
        return spk
    
    elif speaker == "派蒙":
        spk = 16
        return spk
    
    elif speaker == "c1":
        spk = 18
        return spk

    elif speaker == "c2":
        spk = 19
        return spk

    elif speaker == "華恋":
        spk = 21
        return spk

    elif speaker == "まひる":
        spk = 22
        return spk

    elif speaker == "なな":
        spk = 23
        return spk

    elif speaker == "クロディーヌ":
        spk = 24
        return spk

    elif speaker == "ひかり":
        spk = 25
        return spk

    elif speaker == "純那":
        spk = 26
        return spk

    elif speaker == "香子":
        spk = 27
        return spk

    elif speaker == "真矢":
        spk = 28
        return spk
    
    elif speaker == "双葉":
        spk = 29
        return spk
    
    elif speaker == "ミチル":
        spk = 30
        return spk
    
    elif speaker == "メイファン":
        spk = 31
        return spk
    
    elif speaker == "やちよ":
        spk = 32
        return spk
   
    elif speaker == "晶":
        spk = 33
        return spk
    
    elif speaker == "いちえ":
        spk = 34
        return spk
    
    elif speaker == "ゆゆ子":
        spk = 35
        return spk
    
    elif speaker == "塁":
        spk = 36
        return spk
    
    elif speaker == "珠緒":
        spk = 37
        return spk
    
    elif speaker == "あるる":
        spk = 38
        return spk
    
    elif speaker == "ララフィン":
        spk = 39
        return spk
    
    elif speaker == "美空":
        spk = 40
        return spk
    
    elif speaker == "静羽":
        spk = 41
        return spk
    
    else:
        return 0

def check_text(input):
    if isinstance(input, str):
        return input
    else:
        with open(input.name, "r", encoding="utf-8") as f:
            return f.read()

if __name__ == '__main__':
    hps = utils.get_hparams_from_file('checkpoints/tmp/config.json')
    dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    models = []
    schools_list = ["ShojoKageki-Nijigasaki","ShojoKageki","Nijigasaki"]
    schools = []
    lan = ["中文","日文","自动","手动"]
    with open("checkpoints/info.json", "r", encoding="utf-8") as f:
        models_info = json.load(f)
    for i in models_info:
        checkpoint = models_info[i]["checkpoint"]
        phone_dict = {
            symbol: i for i, symbol in enumerate(symbols)
        }
        net_g = SynthesizerTrn(
            len(symbols),
            hps.data.filter_length // 2 + 1,
            hps.train.segment_size // hps.data.hop_length,
            n_speakers=hps.data.n_speakers,
            **hps.model).to(dev)
        _ = net_g.eval()
        _ = utils.load_checkpoint(checkpoint, net_g)
        school = models_info[i]
        speakers = school["speakers"]
        content = []
        for j in speakers:
            sid = int(speakers[j]['sid'])
            title = school
            example = speakers[j]['speech']
            name = speakers[j]["name"]
            content.append((sid, name, title, example, create_tts_fn(net_g,hps,sid)))
        models.append(content)
        schools.append((i,create_vc_fn(net_g,hps)))
    with gr.Blocks() as app:
        with gr.Tabs():
            for (i,vc_fn) in schools:
                with gr.TabItem(i):
                    idols = ["派蒙"]
                    for (sid, name,  title, example, tts_fn) in models[schools_list.index(i)]:
                        idols.append(name)
                        with gr.TabItem(name):
                            with gr.Column():
                                with gr.Row():
                                    with gr.Row():
                                        gr.Markdown(
                                            '<div align="center">'
                                            f'<img style="width:auto;height:400px;" src="file/image/{name}.png">' 
                                            '</div>'
                                        )
                                    chatbot = gr.Chatbot()
                                with gr.Row():
                                    with gr.Column(scale=0.85):
                                        input1 = gr.TextArea(label="Text", value=example,lines = 1)    
                                    with gr.Column(scale=0.15, min_width=0):
                                        btnVC = gr.Button("Send")
                                output1 = gr.Audio(label="采样率22050")
                                with gr.Accordion(label="Setting", open=False):
                                    input2 = gr.Dropdown(label="Language", choices=lan, value="自动", interactive=True)
                                    input4 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.6)
                                    input5 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.668)
                                    input6 = gr.Slider(minimum=0.1, maximum=10, label="duration", value=1) 
                                with gr.Accordion(label="Advanced Setting", open=False):
                                    audio_input3 = gr.Dropdown(label="重复次数", choices=list(range(101)), value='0', interactive=True) 
                                    api_input1 = gr.Checkbox(value=False, label="接入chatgpt")
                                    api_input2 = gr.TextArea(label="api-key",lines=1,value = '懂得都懂')   
                                with gr.Accordion(label="Advanced Setting", open=False):
                                    output2 = gr.outputs.File(label="字幕文件:subtitles.srt")
                                    audio_input1 = gr.Checkbox(value=False, label="保存路径")
                                    audio_input2 = gr.TextArea(label="音频路径",lines=1,value = 'D:/path/to/live2d/sounds/temp.wav')
                                    input3 = gr.Checkbox(value=False, label="长句切割(小说合成)")
                                    inputxt = gr.File(label="Text")
                                    is_transfer = gr.Checkbox(value=False, label="是否声线转化")
                                    source_speaker = gr.Dropdown(choices=idols, value=name, label="source speaker")
                                    target_speaker = gr.Dropdown(choices=idols, value=name, label="target speaker")
                                    btnbook = gr.Button("小说合成")  
                        btnVC.click(bot, inputs = [chatbot,input1], outputs = [chatbot]).then(
    tts_fn, inputs=[is_transfer,source_speaker,target_speaker,chatbot,api_input1,api_input2,audio_input1,audio_input2,audio_input3,input1,input2,input3,input4,input5,input6], outputs=[chatbot,output2,output1]
    )
                        btnbook.click(bot, inputs = [chatbot,inputxt], outputs = [chatbot]).then(
    tts_fn, inputs=[is_transfer,source_speaker,target_speaker,chatbot,api_input1,api_input2,audio_input1,audio_input2,audio_input3,inputxt,input2,input3,input4,input5,input6], outputs=[chatbot,output2,output1]
    )
                    with gr.Tab("Voice Conversion(类似sovits)"):
                        gr.Markdown("""
                                        声线转化,使用模型中的说话人作为音源时效果更佳
                        """)
                        with gr.Column():
                            with gr.Accordion(label="方法1:录制或上传声音,可进行歌声合成", open=False):
                                record_audio = gr.Audio(label="record your voice", source="microphone")
                                upload_audio = gr.Audio(label="or upload audio here", source="upload")
                            with gr.Accordion(label="方法2:由原说话人先进行tts后套娃,适用于合成中文等特殊场景", open=True):
                                text = gr.TextArea(label="Text", value='由源说话人进行语音转化',lines = 1)
                                language = gr.Dropdown(label="Language", choices=lan, value="自动", interactive=True)   
                                n_scale = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.6)
                                n_scale_w = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.668)
                                l_scale = gr.Slider(minimum=0.1, maximum=10, label="duration", value=1.1)
                            source_speaker = gr.Dropdown(choices=idols, value=idols[-2], label="source speaker")
                            target_speaker = gr.Dropdown(choices=idols, value=idols[-3], label="target speaker")
                        with gr.Column():
                            message_box = gr.Textbox(label="Message")
                            converted_audio = gr.Audio(label='converted audio')
                        btn = gr.Button("Convert!")
                        btn.click(vc_fn, inputs=[text,language,n_scale,n_scale_w,l_scale,source_speaker, target_speaker, record_audio, upload_audio],
                                outputs=[message_box, converted_audio])  
    app.launch()