File size: 1,245 Bytes
a36f6e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import ONNXVITS_models
import utils
from text.symbols import symbols
from text import text_to_sequence
import torch
import commons
def get_text(text, hps):
text_norm = text_to_sequence(text, symbols, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
return text_norm
def get_label(text, label):
if f'[{label}]' in text:
return True, text.replace(f'[{label}]', '')
else:
return False, text
hps_ms = utils.get_hparams_from_file("/content/drive/MyDrive/moe/config.json")
net_g_ms = ONNXVITS_models.SynthesizerTrn(
len(symbols),
hps_ms.data.filter_length // 2 + 1,
hps_ms.train.segment_size // hps_ms.data.hop_length,
n_speakers=hps_ms.data.n_speakers,
**hps_ms.model)
_ = net_g_ms.eval()
_ = utils.load_checkpoint("/content/drive/MyDrive/moe/G_909000.pth", net_g_ms)
text1 = get_text("[JA]ありがとうございます。[JA]", hps_ms)
stn_tst = text1
with torch.no_grad():
x_tst = stn_tst.unsqueeze(0)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
sid = torch.tensor([0])
o = net_g_ms(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1) |