File size: 13,996 Bytes
5f25dab
 
a7adc86
a36f6e8
 
43ef6e1
 
 
 
e822849
43ef6e1
 
a36f6e8
 
585a2ef
0839393
84b0af6
 
 
 
bf56a96
84b0af6
 
 
 
 
 
bf56a96
84b0af6
bf56a96
 
84b0af6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8b8c52
84b0af6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1de440
84b0af6
 
 
d1de440
84b0af6
 
 
d1de440
84b0af6
 
 
d1de440
84b0af6
 
 
d1de440
84b0af6
 
 
d1de440
84b0af6
 
 
d1de440
84b0af6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba7ec16
84b0af6
 
 
ba7ec16
b592687
9f9bb9f
b9a1d36
ba7ec16
 
9f9bb9f
 
ba7ec16
 
9f9bb9f
 
84b0af6
ba7ec16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84b0af6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05f8fbb
84b0af6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32c57db
84b0af6
d487bc0
84b0af6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import romajitable
import re
import numpy as np
import logging
logging.getLogger('numba').setLevel(logging.WARNING)
import IPython.display as ipd
import torch
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import text_to_sequence
import gradio as gr
import time
import datetime
import os
class VitsGradio:
    def __init__(self):
        self.dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        self.lan = ["中文","日文","自动","手动"]
        self.idols = ["歩夢","かすみ","しずく","果林","愛","せつ菜","璃奈","栞子","エマ","ランジュ","ミア","華恋","まひる","なな","クロディーヌ","ひかり",'純那',"香子","真矢","双葉","ミチル","メイファン","やちよ","晶","いちえ","ゆゆ子","塁","珠緒","あるる","ララフィン","美空","静羽"]
        self.modelPaths = []
        for root,dirs,files in os.walk("checkpoints"):
            for dir in dirs:
                self.modelPaths.append(dir)
        with gr.Blocks() as self.Vits:
            gr.Markdown(
            "## <center> LoveLive!虹咲学园学园偶像同好会-少女☆歌劇 Vits\n"
            "### <center> 请不要生成会对个人以及企划造成侵害的内容\n"
            "<div align='center'>这是一个实时更新的仓库,目前结束训练有标贝普通话版(biaobei),去标贝版(default),以及少歌部分角色版(ShojoKageki),正在训练中的全员版(tmp)。</div>"
            '<div align="center"><a>参数说明:由于手游中提取的语音过于有感情,建议将噪声比例调节至0.2-0.3区间,ShojoKageki模型则可以尝试默认的0.667;噪声偏差对应着每个字之间的间隔,对普通话影响较大,建议0.6-0.8;duration代表整体语速</div>'
            '<div align="center"><a>合成前请先选择模型,否则第一次合成不一定成功。长段落/小说合成建议colab或本地运行</div>')
            with gr.Tab("TTS合成"):
                with gr.Row():
                    with gr.Column():
                        with gr.Row():
                            with gr.Column():
                                input1 = gr.TextArea(label="Text", value="为什么你会那么熟练啊?你和雪菜亲过多少次了")
                                input2 = gr.Dropdown(label="Language", choices=self.lan, value="自动", interactive=True)
                                input3 = gr.Dropdown(label="Speaker", choices=self.idols, value="歩夢", interactive=True)
                                btnVC = gr.Button("Submit")
                            with gr.Column():
                                input4 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.267)
                                input5 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.7)
                                input6 = gr.Slider(minimum=0.1, maximum=10, label="duration", value=1)
                                output1 = gr.Audio(label="采样率22050")
                btnVC.click(self.infer, inputs=[input1, input2, input3, input4, input5, input6], outputs=[output1])
            with gr.Tab("选择模型"):
                with gr.Column():
                    modelstrs = gr.Dropdown(label = "模型", choices = self.modelPaths, value = self.modelPaths[0], type = "value")
                    btnMod = gr.Button("载入模型")
                    statusa = gr.TextArea()
                    btnMod.click(self.loadCk, inputs=[modelstrs], outputs = [statusa])
            with gr.Tab("小说合成(带字幕)"):
                with gr.Row():
                    with gr.Column():
                        with gr.Row():
                            with gr.Column():
                                input1 = gr.TextArea(label="建议colab或本地克隆后运行本仓库", value="为什么你会那么熟练啊?你和雪菜亲过多少次了")
                                input2 = gr.Dropdown(label="Language", choices=self.lan, value="自动", interactive=True)
                                input3 = gr.Dropdown(label="Speaker", choices=self.idols, value="歩夢", interactive=True)
                                btnVC = gr.Button("Submit")
                            with gr.Column():
                                input4 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.267)
                                input5 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.7)
                                input6 = gr.Slider(minimum=0.1, maximum=10, label="Duration", value=1)
                                output1 = gr.Audio(label="采样率22050")
                                subtitle = gr.outputs.File(label="字幕文件:subtitles.srt")
                btnVC.click(self.infer2, inputs=[input1, input2, input3, input4, input5, input6], outputs=[output1,subtitle])
    
    def loadCk(self,path):
        self.hps = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
        self.net_g = SynthesizerTrn(
            len(symbols),
            self.hps.data.filter_length // 2 + 1,
            self.hps.train.segment_size // self.hps.data.hop_length,
            n_speakers=self.hps.data.n_speakers,
            **self.hps.model).to(self.dev)
        _ = self.net_g.eval()
        _ = utils.load_checkpoint(f"checkpoints/{path}/model.pth", self.net_g)
        return "success"

    def get_text(self,text):
        text_norm = text_to_sequence(text,self.hps.data.text_cleaners)
        if self.hps.data.add_blank:
            text_norm = commons.intersperse(text_norm, 0)
        text_norm = torch.LongTensor(text_norm)
        return text_norm
    
    def is_japanese(self,string):
        for ch in string:
            if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
                return True
        return False
    
    def is_english(self,string):
        import re
        pattern = re.compile('^[A-Za-z0-9.,:;!?()_*"\' ]+$')
        if pattern.fullmatch(string):
            return True
        else:
            return False
    
    def selection(self,speaker):
        if speaker == "高咲侑":
            spk = 0
            return spk

        elif speaker == "歩夢":
            spk = 1
            return spk

        elif speaker == "かすみ":
            spk = 2
            return spk

        elif speaker == "しずく":
            spk = 3
            return spk

        elif speaker == "果林":
            spk = 4
            return spk
    
        elif speaker == "愛":
            spk = 5
            return spk

        elif speaker == "彼方":
            spk = 6
            return spk

        elif speaker == "せつ菜":
            spk = 7
            return spk
        elif speaker == "エマ":
            spk = 8
            return spk
        elif speaker == "璃奈":
            spk = 9
            return spk
        elif speaker == "栞子":
            spk = 10
            return spk
        elif speaker == "ランジュ":
            spk = 11
            return spk
        elif speaker == "ミア":
            spk = 12
            return spk
        
        elif speaker == "派蒙":
            spk = 16
            return spk
        
        elif speaker == "華恋":
            spk = 21
            return spk

        elif speaker == "まひる":
            spk = 22
            return spk
    
        elif speaker == "なな":
            spk = 23
            return spk
    
        elif speaker == "クロディーヌ":
            spk = 24
            return spk
    
        elif speaker == "ひかり":
            spk = 25
            return spk
    
        elif speaker == "純那":
            spk = 26
            return spk
    
        elif speaker == "香子":
            spk = 27
            return spk
    
        elif speaker == "真矢":
            spk = 28
            return spk
        elif speaker == "双葉":
            spk = 29
            return spk
        elif speaker == "ミチル":
            spk = 30
            return spk
        elif speaker == "メイファン":
            spk = 31
            return spk
        elif speaker == "やちよ":
            spk = 32
            return spk
        elif speaker == "晶":
            spk = 33
            return spk
        elif speaker == "いちえ":
            spk = 34
            return spk
        elif speaker == "ゆゆ子":
            spk = 35
            return spk
        elif speaker == "塁":
            spk = 36
            return spk
        elif speaker == "珠緒":
            spk = 37
            return spk
        elif speaker == "あるる":
            spk = 38
            return spk
        elif speaker == "ララフィン":
            spk = 39
            return spk
        elif speaker == "美空":
            spk = 40
            return spk
        elif speaker == "静羽":
            spk = 41
            return spk
        else:
            return 0
            
    
    def sle(self,language,text):
        text = text.replace('\n','。').replace(' ',',')
        if language == "中文":
            tts_input1 = "[ZH]" + text + "[ZH]"
            return tts_input1
        elif language == "自动":
            tts_input1 = f"[JA]{text}[JA]" if self.is_japanese(text) else f"[ZH]{text}[ZH]"
            return tts_input1
        elif language == "日文":
            tts_input1 = "[JA]" + text + "[JA]"
            return tts_input1
        elif language == "英文":
            tts_input1 = "[EN]" + text + "[EN]"
            return tts_input1
        elif language == "手动":
            return text
    
    def extrac(self,text):
        text = re.sub("<[^>]*>","",text)
        result_list = re.split(r'\n', text)
        final_list = []
        for i in result_list:
            if self.is_english(i):
                i = romajitable.to_kana(i).katakana
            i = i.replace('\n','').replace(' ','')
            #Current length of single sentence: 20 
            if len(i)>1:
                if len(i) > 20:
                    try:
                        cur_list = re.split(r'。|!', i)
                        for i in cur_list:
                            if len(i)>1:
                                final_list.append(i+'。')
                    except:
                        pass
                else:
                    final_list.append(i)
        final_list = [x for x in final_list if x != '']
        print(final_list)
        return final_list

    def infer(self, text ,language, speaker_id,n_scale= 0.667,n_scale_w = 0.8, l_scale = 1):
        try:
            speaker_id = int(self.selection(speaker_id))
            t1 = time.time()
            stn_tst = self.get_text(self.sle(language,text))
            with torch.no_grad():
                x_tst = stn_tst.unsqueeze(0).to(self.dev)
                x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(self.dev)
                sid = torch.LongTensor([speaker_id]).to(self.dev)
                audio = self.net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=n_scale, noise_scale_w=n_scale_w, length_scale=l_scale)[0][0,0].data.cpu().float().numpy()
                t2 = time.time()
                spending_time = "推理时间为:"+str(t2-t1)+"s"
                print(spending_time)
            return (self.hps.data.sampling_rate, audio)
        except:
            self.hps = utils.get_hparams_from_file(f"checkpoints/biaobei/config.json")
            self.net_g = SynthesizerTrn(
                len(symbols),
                self.hps.data.filter_length // 2 + 1,
                self.hps.train.segment_size // self.hps.data.hop_length,
                n_speakers=self.hps.data.n_speakers,
                **self.hps.model).to(self.dev)
            _ = self.net_g.eval()
            _ = utils.load_checkpoint(f"checkpoints/biaobei/model.pth", self.net_g)

    def infer2(self, text ,language, speaker_id,n_scale= 0.667,n_scale_w = 0.8, l_scale = 1):
        speaker_id = int(self.selection(speaker_id))
        a = ['【','[','(','(']
        b = ['】',']',')',')']
        for i in a:
            text = text.replace(i,'<')
        for i in b:
            text = text.replace(i,'>')
        final_list = self.extrac(text.replace('“','').replace('”',''))
        audio_fin = []
        c = 0
        t = datetime.timedelta(seconds=0)
        f1 = open("subtitles.srt",'w',encoding='utf-8')
        for sentence in final_list:
            c +=1
            stn_tst = self.get_text(self.sle(language,text))
            with torch.no_grad():
                x_tst = stn_tst.unsqueeze(0).to(self.dev)
                x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(self.dev)
                sid = torch.LongTensor([speaker_id]).to(self.dev)
                t1 = time.time()
                audio = self.net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=n_scale, noise_scale_w=n_scale_w, length_scale=l_scale)[0][0,0].data.cpu().float().numpy()
                t2 = time.time()
                spending_time = "第"+str(c)+"句的推理时间为:"+str(t2-t1)+"s"
                print(spending_time)
                time_start = str(t).split(".")[0] + "," + str(t.microseconds)[:3]
                last_time = datetime.timedelta(seconds=len(audio)/float(22050))
                t+=last_time
                time_end = str(t).split(".")[0] + "," + str(t.microseconds)[:3]
                print(time_end)
                f1.write(str(c-1)+'\n'+time_start+' --> '+time_end+'\n'+sentence+'\n\n')
                audio_fin.append(audio)
        file_path = "subtitles.srt"
        return (self.hps.data.sampling_rate, np.concatenate(audio_fin)),file_path
print("开始部署")
grVits = VitsGradio()
grVits.Vits.launch()