File size: 22,798 Bytes
506e073
73140b0
 
 
3604243
73140b0
 
 
506e073
 
 
 
 
 
 
a36f6e8
73140b0
 
3604243
 
 
f222b7d
 
3604243
73140b0
 
 
 
3604243
 
73140b0
 
 
 
 
 
e58b2ee
3604243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f222b7d
3604243
 
 
 
c25a639
 
 
3604243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e7715d
3604243
 
 
f222b7d
3604243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f222b7d
3604243
 
 
 
 
f222b7d
3604243
 
73140b0
 
 
 
3604243
73140b0
 
 
 
506e073
 
 
73140b0
 
3604243
 
 
 
 
 
 
 
d4ed48a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c25a639
d4ed48a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3604243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f222b7d
3604243
 
 
f222b7d
3604243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e7715d
3604243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f222b7d
3604243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c25a639
 
 
 
 
 
 
3604243
 
 
c25a639
3604243
 
 
 
 
 
c25a639
 
 
c3497ff
2a1b32b
3604243
73140b0
3604243
73140b0
3604243
 
 
 
73140b0
 
 
3604243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e7715d
3604243
 
 
 
d4ed48a
 
3604243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4ed48a
3604243
 
d4ed48a
3604243
c25a639
d4ed48a
c25a639
3604243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3497ff
3604243
 
 
c3497ff
3604243
c25a639
 
3604243
 
 
 
 
 
c25a639
3604243
d4ed48a
c25a639
 
 
 
 
 
 
 
c3497ff
c25a639
 
 
 
 
 
 
 
 
 
 
 
3604243
 
 
 
 
c3497ff
 
3604243
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
import logging
logging.getLogger('numba').setLevel(logging.WARNING)
logging.getLogger('matplotlib').setLevel(logging.WARNING)
logging.getLogger('urllib3').setLevel(logging.WARNING)
import json
import re
import numpy as np
import IPython.display as ipd
import torch
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import text_to_sequence
import gradio as gr
import time
import datetime
import os
import pickle
import openai
from scipy.io.wavfile import write
import librosa
from mel_processing import spectrogram_torch
def is_japanese(string):
        for ch in string:
            if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
                return True
        return False

def is_english(string):
        import re
        pattern = re.compile('^[A-Za-z0-9.,:;!?()_*"\' ]+$')
        if pattern.fullmatch(string):
            return True
        else:
            return False

def to_html(chat_history):
    chat_html = ""
    for item in chat_history:
        if item['role'] == 'user':
            chat_html += f"""
                <div style="margin-bottom: 20px;">
                    <div style="text-align: right; margin-right: 20px;">
                        <span style="background-color: #4CAF50; color: black; padding: 10px; border-radius: 10px; display: inline-block; max-width: 80%; word-wrap: break-word;">
                            {item['content']}
                        </span>
                    </div>
                </div>
            """
        else:
            chat_html += f"""
                <div style="margin-bottom: 20px;">
                    <div style="text-align: left; margin-left: 20px;">
                        <span style="background-color: white; color: black; padding: 10px; border-radius: 10px; display: inline-block; max-width: 80%; word-wrap: break-word;">
                            {item['content']}
                        </span>
                    </div>
                </div>
            """
    output_html = f"""
        <div style="height: 400px; overflow-y: scroll; padding: 10px;">
            {chat_html}
        </div>
    """
    return output_html

def extrac(text):
    text = re.sub("<[^>]*>","",text)
    result_list = re.split(r'\n', text)
    final_list = []
    if not torch.cuda.is_available():
        if len(final_list) > 10:
            return ['对不起,做不到']
    for i in result_list:
        if is_english(i):
            i = romajitable.to_kana(i).katakana
        i = i.replace('\n','').replace(' ','')
        #Current length of single sentence: 20 
        if len(i)>1:
            if len(i) > 20:
                try:
                    cur_list = re.split(r'。|!', i)
                    for i in cur_list:
                        if len(i)>1:
                            final_list.append(i+'。')
                except:
                    pass
            else:
                final_list.append(i)
    final_list = [x for x in final_list if x != '']
    print(final_list)
    return final_list

def to_numpy(tensor: torch.Tensor):
    return tensor.detach().cpu().numpy() if tensor.requires_grad \
        else tensor.detach().numpy()

def chatgpt(text):
    messages = []
    try:
        with open('log.pickle', 'rb') as f:
            messages = pickle.load(f)
            messages.append({"role": "user", "content": text},)
            chat = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages)
            reply = chat.choices[0].message.content
            messages.append({"role": "assistant", "content": reply})
            print(messages[-1])
            if len(messages) == 12:
                messages[6:10] = messages[8:]
                del messages[-2:]
            with open('log.pickle', 'wb') as f:
                messages2 = []
                pickle.dump(messages2, f)
            return reply,messages
    except:
        messages.append({"role": "user", "content": text},)
        chat = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages)
        reply = chat.choices[0].message.content
        messages.append({"role": "assistant", "content": reply})
        print(messages[-1])
        if len(messages) == 12:
            messages[6:10] = messages[8:]
            del messages[-2:]
        with open('log.pickle', 'wb') as f:
            pickle.dump(messages, f)
        return reply,messages

def get_symbols_from_json(path):
    assert os.path.isfile(path)
    with open(path, 'r') as f:
        data = json.load(f)
    return data['symbols']

def sle(language,text):
        text = text.replace('\n', ' ').replace('\r', '').replace(" ", "")
        if language == "中文":
            tts_input1 = "[ZH]" + text + "[ZH]"
            return tts_input1
        elif language == "自动":
            tts_input1 = f"[JA]{text}[JA]" if is_japanese(text) else f"[ZH]{text}[ZH]"
            return tts_input1
        elif language == "日文":
            tts_input1 = "[JA]" + text + "[JA]"
            return tts_input1
        elif language == "英文":
            tts_input1 = "[EN]" + text + "[EN]"
            return tts_input1
        elif language == "手动":
            return text

def get_text(text,hps_ms):
    text_norm = text_to_sequence(text,hps_ms.data.text_cleaners)
    if hps_ms.data.add_blank:
        text_norm = commons.intersperse(text_norm, 0)
    text_norm = torch.LongTensor(text_norm)
    return text_norm

def create_vc_fn(net_g,hps):
    def vc_fn(text,language,n_scale,n_scale_w,l_scale,original_speaker, target_speaker, record_audio, upload_audio):
        input_audio = record_audio if record_audio is not None else upload_audio
        original_speaker_id = selection(original_speaker)
        target_speaker_id = selection(target_speaker)
        if input_audio is None:
            stn_tst = get_text(sle(language,text),hps)
            with torch.no_grad():
                x_tst = stn_tst.unsqueeze(0).to(dev)
                x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(dev)
                sid = torch.LongTensor([original_speaker_id]).to(dev)
                audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=n_scale, noise_scale_w=n_scale_w, length_scale=l_scale)[0][0,0].data.cpu().float().numpy()
                sampling_rate = hps.data.sampling_rate
        else:
            sampling_rate, audio = input_audio
            audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
        if len(audio.shape) > 1:
            audio = librosa.to_mono(audio.transpose(1, 0))
        if sampling_rate != hps.data.sampling_rate:
            audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=hps.data.sampling_rate)
        with torch.no_grad():
            y = torch.FloatTensor(audio)
            y = y / max(-y.min(), y.max()) / 0.99
            y = y.to(dev)
            y = y.unsqueeze(0)
            spec = spectrogram_torch(y, hps.data.filter_length,
                                        hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
                                        center=False).to(dev)
            spec_lengths = torch.LongTensor([spec.size(-1)]).to(dev)
            sid_src = torch.LongTensor([original_speaker_id]).to(dev)
            sid_tgt = torch.LongTensor([target_speaker_id]).to(dev)
            audio = net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][
                0, 0].data.cpu().float().numpy()
        del y, spec, spec_lengths, sid_src, sid_tgt
        return "Success", (hps.data.sampling_rate, audio)
    return vc_fn

def selection(speaker):
    if speaker == "高咲侑":
        spk = 0
        return spk

    elif speaker == "歩夢":
        spk = 1
        return spk

    elif speaker == "かすみ":
        spk = 2
        return spk

    elif speaker == "しずく":
        spk = 3
        return spk

    elif speaker == "果林":
        spk = 4
        return spk

    elif speaker == "愛":
        spk = 5
        return spk

    elif speaker == "彼方":
        spk = 6
        return spk

    elif speaker == "せつ菜":
        spk = 7
        return spk
    
    elif speaker == "エマ":
        spk = 8
        return spk
    
    elif speaker == "璃奈":
        spk = 9
        return spk
    
    elif speaker == "栞子":
        spk = 10
        return spk
    
    elif speaker == "ランジュ":
        spk = 11
        return spk
    
    elif speaker == "ミア":
        spk = 12
        return spk
    
    elif speaker == "派蒙":
        spk = 16
        return spk
    
    elif speaker == "c1":
        spk = 18
        return spk

    elif speaker == "c2":
        spk = 19
        return spk

    elif speaker == "華恋":
        spk = 21
        return spk

    elif speaker == "まひる":
        spk = 22
        return spk

    elif speaker == "なな":
        spk = 23
        return spk

    elif speaker == "クロディーヌ":
        spk = 24
        return spk

    elif speaker == "ひかり":
        spk = 25
        return spk

    elif speaker == "純那":
        spk = 26
        return spk

    elif speaker == "香子":
        spk = 27
        return spk

    elif speaker == "真矢":
        spk = 28
        return spk
    
    elif speaker == "双葉":
        spk = 29
        return spk
    
    elif speaker == "ミチル":
        spk = 30
        return spk
    
    elif speaker == "メイファン":
        spk = 31
        return spk
    
    elif speaker == "やちよ":
        spk = 32
        return spk
   
    elif speaker == "晶":
        spk = 33
        return spk
    
    elif speaker == "いちえ":
        spk = 34
        return spk
    
    elif speaker == "ゆゆ子":
        spk = 35
        return spk
    
    elif speaker == "塁":
        spk = 36
        return spk
    
    elif speaker == "珠緒":
        spk = 37
        return spk
    
    elif speaker == "あるる":
        spk = 38
        return spk
    
    elif speaker == "ララフィン":
        spk = 39
        return spk
    
    elif speaker == "美空":
        spk = 40
        return spk
    
    elif speaker == "静羽":
        spk = 41
        return spk
    
    else:
        return 0

def check_text(input):
    if isinstance(input, str):
        return input
    else:
        with open(input.name, "r", encoding="utf-8") as f:
            return f.read()

def create_tts_fn(net_g,hps,speaker_id):
    speaker_id = int(speaker_id)
    def tts_fn(is_gpt,api_key,is_audio,audiopath,repeat_time,text, language, extract, n_scale= 0.667,n_scale_w = 0.8, l_scale = 1 ):
        text = check_text(text)
        repeat_ime = int(repeat_time)
        if is_gpt:
            openai.api_key = api_key
            text,messages = chatgpt(text)
            htm = to_html(messages)
        else:
            messages = []
            messages.append({"role": "assistant", "content": text})
            htm = to_html(messages)
        if language == '自动':
            l_scale = 1.1 if is_japanese(text) else l_scale
        if not extract:
            t1 = time.time()
            stn_tst = get_text(sle(language,text),hps)
            with torch.no_grad():
                x_tst = stn_tst.unsqueeze(0).to(dev)
                x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(dev)
                sid = torch.LongTensor([speaker_id]).to(dev)
                audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=n_scale, noise_scale_w=n_scale_w, length_scale=l_scale)[0][0,0].data.cpu().float().numpy()
                t2 = time.time()
                spending_time = "推理时间为:"+str(t2-t1)+"s"
                print(spending_time)
                file_path = "subtitles.srt"
            try:          
                write(audiopath + '.wav',22050,audio)
                if is_audio:
                    for i in range(repeat_time):
                        cmd = 'ffmpeg -y -i ' +  audiopath + '.wav' + ' -ar 44100 '+ audiopath.replace('temp','temp'+str(i))
                        os.system(cmd)
            except:
                pass
            return (hps.data.sampling_rate, audio),file_path,htm
        else:
            a = ['【','[','(','(']
            b = ['】',']',')',')']
            for i in a:
                text = text.replace(i,'<')
            for i in b:
                text = text.replace(i,'>')
            final_list = extrac(text.replace('“','').replace('”',''))
            audio_fin = []
            c = 0
            t = datetime.timedelta(seconds=0)
            for sentence in final_list:
                try:
                    f1 = open("subtitles.srt",'w',encoding='utf-8')
                    c +=1
                    stn_tst = get_text(sle(language,sentence),hps)
                    with torch.no_grad():
                        x_tst = stn_tst.unsqueeze(0).to(dev)
                        x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(dev)
                        sid = torch.LongTensor([speaker_id]).to(dev)
                        t1 = time.time()
                        audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=n_scale, noise_scale_w=n_scale_w, length_scale=l_scale)[0][0,0].data.cpu().float().numpy()
                        t2 = time.time()
                        spending_time = "第"+str(c)+"句的推理时间为:"+str(t2-t1)+"s"
                        print(spending_time)
                        time_start = str(t).split(".")[0] + "," + str(t.microseconds)[:3]
                        last_time = datetime.timedelta(seconds=len(audio)/float(22050))
                        t+=last_time
                        time_end = str(t).split(".")[0] + "," + str(t.microseconds)[:3]
                        print(time_end)
                        f1.write(str(c-1)+'\n'+time_start+' --> '+time_end+'\n'+sentence+'\n\n')
                        audio_fin.append(audio)
                except:
                    pass
                try:
                    write(audiopath + '.wav',22050,np.concatenate(audio_fin))
                    if is_audio:
                        for i in range(repeat_time):
                            cmd = 'ffmpeg -y -i ' +  audiopath + '.wav' + ' -ar 44100 '+ audiopath.replace('temp','temp'+str(i))
                            os.system(cmd)
                    
                except:
                    pass
                
            file_path = "subtitles.srt"
            return (hps.data.sampling_rate, np.concatenate(audio_fin)),file_path,htm
    return tts_fn

if __name__ == '__main__':
    hps = utils.get_hparams_from_file('checkpoints/tmp/config.json')
    dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    models = []
    schools_list = ["ShojoKageki-Nijigasaki","ShojoKageki","Nijigasaki"]
    schools = []
    lan = ["中文","日文","自动","手动"]
    with open("checkpoints/info.json", "r", encoding="utf-8") as f:
        models_info = json.load(f)
    for i in models_info:
        school = models_info[i]
        speakers = school["speakers"]
        phone_dict = {
            symbol: i for i, symbol in enumerate(symbols)
        }
        checkpoint = models_info[i]["checkpoint"]
        net_g = SynthesizerTrn(
            len(symbols),
            hps.data.filter_length // 2 + 1,
            hps.train.segment_size // hps.data.hop_length,
            n_speakers=hps.data.n_speakers,
            **hps.model).to(dev)
        _ = net_g.eval()
        _ = utils.load_checkpoint(checkpoint , net_g)
        content = []
        for j in speakers:
            sid = int(speakers[j]['sid'])
            title = school
            example = speakers[j]['speech']
            name = speakers[j]["name"]
            content.append((sid, name, title, example, create_tts_fn(net_g,hps,sid)))
        models.append(content)
        schools.append((i,create_vc_fn(net_g,hps)))
    with gr.Blocks() as app:
        with gr.Tabs():
            for (i,vc_fn) in schools:
                with gr.TabItem(i):
                    idols = ["派蒙"]
                    for (sid, name,  title, example, tts_fn) in models[schools_list.index(i)]:
                        idols.append(name)
                        with gr.TabItem(name):
                            with gr.Column():
                                with gr.Row():
                                    with gr.Row():
                                        gr.Markdown(
                                            '<div align="center">'
                                            f'<img style="width:auto;height:400px;" src="file/image/{name}.png">' 
                                            '</div>'
                                        )
                                    output_UI = gr.outputs.HTML()
                                with gr.Row():
                                    with gr.Column(scale=0.85):
                                        input1 = gr.TextArea(label="Text", value=example,lines = 1)    
                                    with gr.Column(scale=0.15, min_width=0):
                                        btnVC = gr.Button("Send")
                                output1 = gr.Audio(label="采样率22050")
                                with gr.Accordion(label="Setting(TTS)", open=False):
                                    input2 = gr.Dropdown(label="参数及语言选择方式", choices=lan, value="自动", interactive=True)
                                    input4 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.6)
                                    input5 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.668)
                                    input6 = gr.Slider(minimum=0.1, maximum=10, label="duration", value=1) 
                                with gr.Accordion(label="Advanced Setting(GPT3.5接口+小说合成,仅展示用,大部分功能用不了。需克隆本仓库后本地运行main.py)", open=False):
                                    input3 = gr.Checkbox(value=False, label="长句切割(小说合成)")
                                    inputxt = gr.File(label="Text")
                                    btnbook = gr.Button("小说合成") 
                                    output2 = gr.outputs.File(label="字幕文件:subtitles.srt")
                                    api_input1 = gr.Checkbox(value=False, label="接入chatgpt")
                                    api_input2 = gr.TextArea(label="api-key",lines=1,value = '见 https://openai.com/blog/openai-api')   
                                    audio_input1 = gr.Checkbox(value=False, label="修改音频路径(live2d)")
                                    audio_input2 = gr.TextArea(label="音频路径",lines=1,value = '#参考 D:/app_develop/live2d_whole/2010002/sounds/temp.wav')
                                    audio_input3 = gr.Dropdown(label="重复生成次数", choices=list(range(101)), value='0', interactive=True) 
                        btnbook.click(tts_fn, inputs=[api_input1,api_input2,audio_input1,audio_input2,audio_input3,inputxt,input2,input3,input4,input5,input6], outputs=[output1,output2,output_UI])
                        btnVC.click(tts_fn, inputs=[api_input1,api_input2,audio_input1,audio_input2,audio_input3,input1,input2,input3,input4,input5,input6], outputs=[output1,output2,output_UI])
                    with gr.Tab("Voice Conversion(类似sovits)"):
                        gr.Markdown("""
                                        声线转化,使用模型中的说话人作为音源时效果更佳
                        """)
                        with gr.Column():
                            with gr.Accordion(label="方法1:录制或上传声音,可进行歌声合成", open=False):
                                record_audio = gr.Audio(label="record your voice", source="microphone")
                                upload_audio = gr.Audio(label="or upload audio here", source="upload")
                            with gr.Accordion(label="方法2:由原说话人先进行tts后套娃,适用于合成中文等特殊场景", open=True):
                                text = gr.TextArea(label="Text", value='输入文本',lines = 1)
                                language = gr.Dropdown(label="Language", choices=lan, value="自动", interactive=True)   
                                n_scale = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.6)
                                n_scale_w = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.668)
                                l_scale = gr.Slider(minimum=0.1, maximum=10, label="duration", value=1.1)
                            source_speaker = gr.Dropdown(choices=idols, value=idols[-2], label="source speaker")
                            target_speaker = gr.Dropdown(choices=idols, value=idols[-3], label="target speaker")
                        with gr.Column():
                            message_box = gr.Textbox(label="Message")
                            converted_audio = gr.Audio(label='converted audio')
                        btn = gr.Button("Convert!")
                        btn.click(vc_fn, inputs=[text,language,n_scale,n_scale_w,l_scale,source_speaker, target_speaker, record_audio, upload_audio],
                                outputs=[message_box, converted_audio])    
            with gr.Tab("说明"):
                gr.Markdown(
                "### <center> 请不要生成会对个人以及企划造成侵害的内容,自觉遵守相关法律,静止商业使用或让他人产生困扰\n"
                "<div align='center'>从左到右分别是虹团,少歌中文特化版,以及五校混合版。这三个均为不同的模型,效果也有差异</div>\n"
                "<div align='center'>因为我会时不时地更新模型,所以会碰到平台抽风问题,大部分情况下一天就能恢复了。</div>\n"
                '<div align="center"><a>参数说明:这个十分玄学,如果效果不佳可以将噪声比例和噪声偏差调节至0,这会完全随机化音频源。按照经验,合成日语时也可以将噪声比例调节至0.2-0.3区间,语调会正常一些。duration代表整体语速,可视情况调至1.1或1.2,目前已自动匹配,如需调整将language项调为日文或中文。</div>'
                '<div align="center"><a>建议只在平台上体验最基础的功能,强烈建议将该仓库克隆至本地或者于colab运行,启动程序为main.py或app.py</div>')
    app.launch()