|
import ONNXVITS_models |
|
import utils |
|
from text.symbols import symbols |
|
from text import text_to_sequence |
|
import torch |
|
import commons |
|
|
|
def get_text(text, hps): |
|
text_norm = text_to_sequence(text, symbols, hps.data.text_cleaners) |
|
if hps.data.add_blank: |
|
text_norm = commons.intersperse(text_norm, 0) |
|
text_norm = torch.LongTensor(text_norm) |
|
return text_norm |
|
|
|
def get_label(text, label): |
|
if f'[{label}]' in text: |
|
return True, text.replace(f'[{label}]', '') |
|
else: |
|
return False, text |
|
|
|
hps_ms = utils.get_hparams_from_file("/content/drive/MyDrive/moe/config.json") |
|
net_g_ms = ONNXVITS_models.SynthesizerTrn( |
|
len(symbols), |
|
hps_ms.data.filter_length // 2 + 1, |
|
hps_ms.train.segment_size // hps_ms.data.hop_length, |
|
n_speakers=hps_ms.data.n_speakers, |
|
**hps_ms.model) |
|
_ = net_g_ms.eval() |
|
|
|
_ = utils.load_checkpoint("/content/drive/MyDrive/moe/G_909000.pth", net_g_ms) |
|
|
|
text1 = get_text("[JA]ありがとうございます。[JA]", hps_ms) |
|
stn_tst = text1 |
|
with torch.no_grad(): |
|
x_tst = stn_tst.unsqueeze(0) |
|
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]) |
|
sid = torch.tensor([0]) |
|
o = net_g_ms(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1) |