import torch import spaces import gradio as gr from diffusers import FluxInpaintPipeline import random import numpy as np MARKDOWN = """ # FLUX.1 Inpainting 🎨 Shoutout to [Black Forest Labs](https://huggingface.co/black-forest-labs) team for creating this amazing model, and a big thanks to [Gothos](https://github.com/Gothos) for taking it to the next level by enabling inpainting with the FLUX. """ MAX_SEED = np.iinfo(np.int32).max DEVICE = "cuda" if torch.cuda.is_available() else "cpu" pipe = FluxInpaintPipeline.from_pretrained( "black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE) @spaces.GPU() def process(input_image_editor, uploaded_mask, input_text, strength, seed, randomize_seed, num_inference_steps, guidance_scale=3.5, progress=gr.Progress(track_tqdm=True)): if not input_text: raise gr.Error("Please enter a text prompt.") image = input_image_editor['background'] if uploaded_mask is None: mask_image = input_image_editor['layers'][0] else: mask_image = uploaded_mask if not image: raise gr.Error("Please upload an image.") if not mask_image: raise gr.Error("Please draw or upload a mask on the image.") width, height = image.size if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=DEVICE).manual_seed(seed) result = pipe( prompt=input_text, image=image, mask_image=mask_image, width=width, height=height, strength=strength, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=guidance_scale ).images[0] return result, mask_image, seed with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown(MARKDOWN) with gr.Row(): with gr.Column(scale=1): input_image_editor_component = gr.ImageEditor( label='Image', type='pil', sources=["upload", "webcam"], image_mode='RGB', layers=False, brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed")) input_text_component = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) with gr.Accordion("Advanced Settings", open=False): strength_slider = gr.Slider( minimum=0.0, maximum=1.0, value=0.7, step=0.01, label="Strength" ) num_inference_steps = gr.Slider( minimum=1, maximum=100, value=30, step=1, label="Number of inference steps" ) guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5, ) seed_number = gr.Number( label="Seed", value=42, precision=0 ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Accordion("Upload a mask", open=False): uploaded_mask_component = gr.Image(label="Already made mask (black pixels will be preserved, white pixels will be redrawn)", sources=["upload"], type="pil") submit_button_component = gr.Button( value='Inpaint', variant='primary') with gr.Column(scale=1): output_image_component = gr.Image( type='pil', image_mode='RGB', label='Generated image') with gr.Accordion("Debug Info", open=False): output_mask_component = gr.Image( type='pil', image_mode='RGB', label='Input mask') output_seed = gr.Number(label="Used Seed") submit_button_component.click( fn=process, inputs=[ input_image_editor_component, uploaded_mask_component, input_text_component, strength_slider, seed_number, randomize_seed, num_inference_steps, guidance_scale ], outputs=[ output_image_component, output_mask_component, output_seed ] ) demo.launch(debug=False, show_error=True)