import torch from transformers import CLIPVisionModelWithProjection,CLIPImageProcessor from diffusers.utils import load_image import os,sys from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter import StableDiffusionXLPipeline from kolors.models.modeling_chatglm import ChatGLMModel from kolors.models.tokenization_chatglm import ChatGLMTokenizer # from diffusers import UNet2DConditionModel, AutoencoderKL from diffusers import AutoencoderKL from kolors.models.unet_2d_condition import UNet2DConditionModel from diffusers import EulerDiscreteScheduler from PIL import Image root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) def infer( ip_img_path, prompt ): ckpt_dir = f'{root_dir}/weights/Kolors' text_encoder = ChatGLMModel.from_pretrained( f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half() tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder') vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half() scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler") unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half() image_encoder = CLIPVisionModelWithProjection.from_pretrained( f'{root_dir}/weights/Kolors-IP-Adapter-Plus/image_encoder', ignore_mismatched_sizes=True).to(dtype=torch.float16) ip_img_size = 336 clip_image_processor = CLIPImageProcessor( size=ip_img_size, crop_size=ip_img_size ) pipe = StableDiffusionXLPipeline( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, image_encoder=image_encoder, feature_extractor=clip_image_processor, force_zeros_for_empty_prompt=False ) pipe = pipe.to("cuda") pipe.enable_model_cpu_offload() if hasattr(pipe.unet, 'encoder_hid_proj'): pipe.unet.text_encoder_hid_proj = pipe.unet.encoder_hid_proj pipe.load_ip_adapter( f'{root_dir}/weights/Kolors-IP-Adapter-Plus' , subfolder="", weight_name=["ip_adapter_plus_general.bin"]) basename = ip_img_path.rsplit('/',1)[-1].rsplit('.',1)[0] ip_adapter_img = Image.open( ip_img_path ) generator = torch.Generator(device="cpu").manual_seed(66) for scale in [0.5]: pipe.set_ip_adapter_scale([ scale ]) # print(prompt) image = pipe( prompt= prompt , ip_adapter_image=[ ip_adapter_img ], negative_prompt="", height=1024, width=1024, num_inference_steps= 50, guidance_scale=5.0, num_images_per_prompt=1, generator=generator, ).images[0] image.save(f'{root_dir}/scripts/outputs/sample_ip_{basename}.jpg') if __name__ == '__main__': import fire fire.Fire(infer)