Spaces:
Running
Running
""" | |
@Desc: 全局配置文件读取 | |
""" | |
import argparse | |
import os | |
import shutil | |
from typing import Dict, List | |
import yaml | |
from common.log import logger | |
class Resample_config: | |
"""重采样配置""" | |
def __init__(self, in_dir: str, out_dir: str, sampling_rate: int = 44100): | |
self.sampling_rate: int = sampling_rate # 目标采样率 | |
self.in_dir: str = in_dir # 待处理音频目录路径 | |
self.out_dir: str = out_dir # 重采样输出路径 | |
def from_dict(cls, dataset_path: str, data: Dict[str, any]): | |
"""从字典中生成实例""" | |
# 不检查路径是否有效,此逻辑在resample.py中处理 | |
data["in_dir"] = os.path.join(dataset_path, data["in_dir"]) | |
data["out_dir"] = os.path.join(dataset_path, data["out_dir"]) | |
return cls(**data) | |
class Preprocess_text_config: | |
"""数据预处理配置""" | |
def __init__( | |
self, | |
transcription_path: str, | |
cleaned_path: str, | |
train_path: str, | |
val_path: str, | |
config_path: str, | |
val_per_lang: int = 5, | |
max_val_total: int = 10000, | |
clean: bool = True, | |
): | |
self.transcription_path: str = transcription_path # 原始文本文件路径,文本格式应为{wav_path}|{speaker_name}|{language}|{text}。 | |
self.cleaned_path: str = cleaned_path # 数据清洗后文本路径,可以不填。不填则将在原始文本目录生成 | |
self.train_path: str = train_path # 训练集路径,可以不填。不填则将在原始文本目录生成 | |
self.val_path: str = val_path # 验证集路径,可以不填。不填则将在原始文本目录生成 | |
self.config_path: str = config_path # 配置文件路径 | |
self.val_per_lang: int = val_per_lang # 每个speaker的验证集条数 | |
self.max_val_total: int = max_val_total # 验证集最大条数,多于的会被截断并放到训练集中 | |
self.clean: bool = clean # 是否进行数据清洗 | |
def from_dict(cls, dataset_path: str, data: Dict[str, any]): | |
"""从字典中生成实例""" | |
data["transcription_path"] = os.path.join( | |
dataset_path, data["transcription_path"] | |
) | |
if data["cleaned_path"] == "" or data["cleaned_path"] is None: | |
data["cleaned_path"] = None | |
else: | |
data["cleaned_path"] = os.path.join(dataset_path, data["cleaned_path"]) | |
data["train_path"] = os.path.join(dataset_path, data["train_path"]) | |
data["val_path"] = os.path.join(dataset_path, data["val_path"]) | |
data["config_path"] = os.path.join(dataset_path, data["config_path"]) | |
return cls(**data) | |
class Bert_gen_config: | |
"""bert_gen 配置""" | |
def __init__( | |
self, | |
config_path: str, | |
num_processes: int = 2, | |
device: str = "cuda", | |
use_multi_device: bool = False, | |
): | |
self.config_path = config_path | |
self.num_processes = num_processes | |
self.device = device | |
self.use_multi_device = use_multi_device | |
def from_dict(cls, dataset_path: str, data: Dict[str, any]): | |
data["config_path"] = os.path.join(dataset_path, data["config_path"]) | |
return cls(**data) | |
class Style_gen_config: | |
"""style_gen 配置""" | |
def __init__( | |
self, | |
config_path: str, | |
num_processes: int = 4, | |
device: str = "cuda", | |
): | |
self.config_path = config_path | |
self.num_processes = num_processes | |
self.device = device | |
def from_dict(cls, dataset_path: str, data: Dict[str, any]): | |
data["config_path"] = os.path.join(dataset_path, data["config_path"]) | |
return cls(**data) | |
class Train_ms_config: | |
"""训练配置""" | |
def __init__( | |
self, | |
config_path: str, | |
env: Dict[str, any], | |
# base: Dict[str, any], | |
model_dir: str, | |
num_workers: int, | |
spec_cache: bool, | |
keep_ckpts: int, | |
): | |
self.env = env # 需要加载的环境变量 | |
# self.base = base # 底模配置 | |
self.model_dir = model_dir # 训练模型存储目录,该路径为相对于dataset_path的路径,而非项目根目录 | |
self.config_path = config_path # 配置文件路径 | |
self.num_workers = num_workers # worker数量 | |
self.spec_cache = spec_cache # 是否启用spec缓存 | |
self.keep_ckpts = keep_ckpts # ckpt数量 | |
def from_dict(cls, dataset_path: str, data: Dict[str, any]): | |
# data["model"] = os.path.join(dataset_path, data["model"]) | |
data["config_path"] = os.path.join(dataset_path, data["config_path"]) | |
return cls(**data) | |
class Webui_config: | |
"""webui 配置""" | |
def __init__( | |
self, | |
device: str, | |
model: str, | |
config_path: str, | |
language_identification_library: str, | |
port: int = 7860, | |
share: bool = False, | |
debug: bool = False, | |
): | |
self.device: str = device | |
self.model: str = model # 端口号 | |
self.config_path: str = config_path # 是否公开部署,对外网开放 | |
self.port: int = port # 是否开启debug模式 | |
self.share: bool = share # 模型路径 | |
self.debug: bool = debug # 配置文件路径 | |
self.language_identification_library: str = ( | |
language_identification_library # 语种识别库 | |
) | |
def from_dict(cls, dataset_path: str, data: Dict[str, any]): | |
data["config_path"] = os.path.join(dataset_path, data["config_path"]) | |
data["model"] = os.path.join(dataset_path, data["model"]) | |
return cls(**data) | |
class Server_config: | |
def __init__( | |
self, | |
port: int = 5000, | |
device: str = "cuda", | |
limit: int = 100, | |
language: str = "JP", | |
origins: List[str] = None, | |
): | |
self.port: int = port | |
self.device: str = device | |
self.language: str = language | |
self.limit: int = limit | |
self.origins: List[str] = origins | |
def from_dict(cls, data: Dict[str, any]): | |
return cls(**data) | |
class Translate_config: | |
"""翻译api配置""" | |
def __init__(self, app_key: str, secret_key: str): | |
self.app_key = app_key | |
self.secret_key = secret_key | |
def from_dict(cls, data: Dict[str, any]): | |
return cls(**data) | |
class Config: | |
def __init__(self, config_path: str, path_config: dict[str, str]): | |
if not os.path.isfile(config_path) and os.path.isfile("default_config.yml"): | |
shutil.copy(src="default_config.yml", dst=config_path) | |
logger.info( | |
f"A configuration file {config_path} has been generated based on the default configuration file default_config.yml." | |
) | |
logger.info( | |
"If you have no special needs, please do not modify default_config.yml." | |
) | |
# sys.exit(0) | |
with open(file=config_path, mode="r", encoding="utf-8") as file: | |
yaml_config: Dict[str, any] = yaml.safe_load(file.read()) | |
model_name: str = yaml_config["model_name"] | |
self.model_name: str = model_name | |
if "dataset_path" in yaml_config: | |
dataset_path = yaml_config["dataset_path"] | |
else: | |
dataset_path = os.path.join(path_config["dataset_root"], model_name) | |
self.dataset_path: str = dataset_path | |
self.assets_root: str = path_config["assets_root"] | |
self.out_dir = os.path.join(self.assets_root, model_name) | |
self.resample_config: Resample_config = Resample_config.from_dict( | |
dataset_path, yaml_config["resample"] | |
) | |
self.preprocess_text_config: Preprocess_text_config = ( | |
Preprocess_text_config.from_dict( | |
dataset_path, yaml_config["preprocess_text"] | |
) | |
) | |
self.bert_gen_config: Bert_gen_config = Bert_gen_config.from_dict( | |
dataset_path, yaml_config["bert_gen"] | |
) | |
self.style_gen_config: Style_gen_config = Style_gen_config.from_dict( | |
dataset_path, yaml_config["style_gen"] | |
) | |
self.train_ms_config: Train_ms_config = Train_ms_config.from_dict( | |
dataset_path, yaml_config["train_ms"] | |
) | |
self.webui_config: Webui_config = Webui_config.from_dict( | |
dataset_path, yaml_config["webui"] | |
) | |
self.server_config: Server_config = Server_config.from_dict( | |
yaml_config["server"] | |
) | |
# self.translate_config: Translate_config = Translate_config.from_dict( | |
# yaml_config["translate"] | |
# ) | |
with open(os.path.join("configs", "paths.yml"), "r", encoding="utf-8") as f: | |
path_config: dict[str, str] = yaml.safe_load(f.read()) | |
# Should contain the following keys: | |
# - dataset_root: the root directory of the dataset, default to "Data" | |
# - assets_root: the root directory of the assets, default to "model_assets" | |
try: | |
config = Config("config.yml", path_config) | |
except (TypeError, KeyError): | |
logger.warning("Old config.yml found. Replace it with default_config.yml.") | |
shutil.copy(src="default_config.yml", dst="config.yml") | |
config = Config("config.yml", path_config) | |