Manjushri commited on
Commit
97321a0
1 Parent(s): 08ce291

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -3
app.py CHANGED
@@ -5,6 +5,7 @@ import numpy as np
5
  from PIL import Image
6
  from diffusers import AutoPipelineForImage2Image
7
  from diffusers.utils import load_image
 
8
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
  pipe = AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16) if torch.cuda.is_available() else AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo")
@@ -16,7 +17,9 @@ def resize(value,img):
16
  return img
17
 
18
  def infer(source_img, prompt, steps, seed, Strength):
19
- generator = torch.Generator(device).manual_seed(seed)
 
 
20
  source_image = resize(512, source_img)
21
  source_image.save('source.png')
22
  image = pipe(prompt, image=source_image, strength=Strength, guidance_scale=0.0, num_inference_steps=steps).images[0]
@@ -25,7 +28,7 @@ def infer(source_img, prompt, steps, seed, Strength):
25
  gr.Interface(fn=infer, inputs=[
26
  gr.Image(sources=["upload", "webcam", "clipboard"], type="filepath", label="Raw Image."),
27
  gr.Textbox(label = 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'),
28
- gr.Slider(2, 5, value = 2, step = 1, label = 'Number of Iterations'),
29
  gr.Slider(label = "Seed", minimum = 0, maximum = 987654321987654321, step = 1, randomize = True),
30
- gr.Slider(label='Strength', minimum = .5, maximum = 1, step = .05, value = .5)],
31
  outputs='image', title = "Stable Diffusion XL Turbo Image to Image Pipeline CPU", description = "For more information on Stable Diffusion XL 1.0 see https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0 <br><br>Upload an Image (<b>MUST Be .PNG and 512x512 or 768x768</b>) enter a Prompt, or let it just do its Thing, then click submit. 10 Iterations takes about ~900-1200 seconds currently. For more informationon about Stable Diffusion or Suggestions for prompts, keywords, artists or styles see https://github.com/Maks-s/sd-akashic", article = "Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").queue(max_size=5).launch()
 
5
  from PIL import Image
6
  from diffusers import AutoPipelineForImage2Image
7
  from diffusers.utils import load_image
8
+ import math
9
 
10
  device = "cuda" if torch.cuda.is_available() else "cpu"
11
  pipe = AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16) if torch.cuda.is_available() else AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo")
 
17
  return img
18
 
19
  def infer(source_img, prompt, steps, seed, Strength):
20
+ generator = torch.Generator(device).manual_seed(seed)
21
+ if int(steps * Strength) < 1:
22
+ steps = math.ceil(1 / max(0.10, Strength))
23
  source_image = resize(512, source_img)
24
  source_image.save('source.png')
25
  image = pipe(prompt, image=source_image, strength=Strength, guidance_scale=0.0, num_inference_steps=steps).images[0]
 
28
  gr.Interface(fn=infer, inputs=[
29
  gr.Image(sources=["upload", "webcam", "clipboard"], type="filepath", label="Raw Image."),
30
  gr.Textbox(label = 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'),
31
+ gr.Slider(1, 5, value = 2, step = 1, label = 'Number of Iterations'),
32
  gr.Slider(label = "Seed", minimum = 0, maximum = 987654321987654321, step = 1, randomize = True),
33
+ gr.Slider(label='Strength', minimum = 0.0, maximum = 1, step = .05, value = .5)],
34
  outputs='image', title = "Stable Diffusion XL Turbo Image to Image Pipeline CPU", description = "For more information on Stable Diffusion XL 1.0 see https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0 <br><br>Upload an Image (<b>MUST Be .PNG and 512x512 or 768x768</b>) enter a Prompt, or let it just do its Thing, then click submit. 10 Iterations takes about ~900-1200 seconds currently. For more informationon about Stable Diffusion or Suggestions for prompts, keywords, artists or styles see https://github.com/Maks-s/sd-akashic", article = "Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").queue(max_size=5).launch()