Spaces:
Running
on
T4
Running
on
T4
import argparse | |
import os | |
from time import time | |
import torch | |
import torchaudio | |
from api import TextToSpeech, MODELS_DIR | |
from utils.audio import load_audio, load_voices | |
from utils.text import split_and_recombine_text | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--textfile', type=str, help='A file containing the text to read.', default="tortoise/data/riding_hood.txt") | |
parser.add_argument('--voice', type=str, help='Selects the voice to use for generation. See options in voices/ directory (and add your own!) ' | |
'Use the & character to join two voices together. Use a comma to perform inference on multiple voices.', default='pat') | |
parser.add_argument('--output_path', type=str, help='Where to store outputs.', default='results/longform/') | |
parser.add_argument('--output_name', type=str, help='How to name the output file', default='combined.wav') | |
parser.add_argument('--preset', type=str, help='Which voice preset to use.', default='standard') | |
parser.add_argument('--regenerate', type=str, help='Comma-separated list of clip numbers to re-generate, or nothing.', default=None) | |
parser.add_argument('--candidates', type=int, help='How many output candidates to produce per-voice. Only the first candidate is actually used in the final product, the others can be used manually.', default=1) | |
parser.add_argument('--model_dir', type=str, help='Where to find pretrained model checkpoints. Tortoise automatically downloads these to .models, so this' | |
'should only be specified if you have custom checkpoints.', default=MODELS_DIR) | |
parser.add_argument('--seed', type=int, help='Random seed which can be used to reproduce results.', default=None) | |
parser.add_argument('--produce_debug_state', type=bool, help='Whether or not to produce debug_state.pth, which can aid in reproducing problems. Defaults to true.', default=True) | |
parser.add_argument('--use_deepspeed', type=bool, help='Use deepspeed for speed bump.', default=False) | |
parser.add_argument('--kv_cache', type=bool, help='If you disable this please wait for a long a time to get the output', default=True) | |
parser.add_argument('--half', type=bool, help="float16(half) precision inference if True it's faster and take less vram and ram", default=True) | |
args = parser.parse_args() | |
if torch.backends.mps.is_available(): | |
args.use_deepspeed = False | |
tts = TextToSpeech(models_dir=args.model_dir, use_deepspeed=args.use_deepspeed, kv_cache=args.kv_cache, half=args.half) | |
outpath = args.output_path | |
outname = args.output_name | |
selected_voices = args.voice.split(',') | |
regenerate = args.regenerate | |
if regenerate is not None: | |
regenerate = [int(e) for e in regenerate.split(',')] | |
# Process text | |
with open(args.textfile, 'r', encoding='utf-8') as f: | |
text = ' '.join([l for l in f.readlines()]) | |
if '|' in text: | |
print("Found the '|' character in your text, which I will use as a cue for where to split it up. If this was not" | |
"your intent, please remove all '|' characters from the input.") | |
texts = text.split('|') | |
else: | |
texts = split_and_recombine_text(text) | |
seed = int(time()) if args.seed is None else args.seed | |
for selected_voice in selected_voices: | |
voice_outpath = os.path.join(outpath, selected_voice) | |
os.makedirs(voice_outpath, exist_ok=True) | |
if '&' in selected_voice: | |
voice_sel = selected_voice.split('&') | |
else: | |
voice_sel = [selected_voice] | |
voice_samples, conditioning_latents = load_voices(voice_sel) | |
all_parts = [] | |
for j, text in enumerate(texts): | |
if regenerate is not None and j not in regenerate: | |
all_parts.append(load_audio(os.path.join(voice_outpath, f'{j}.wav'), 24000)) | |
continue | |
gen = tts.tts_with_preset(text, voice_samples=voice_samples, conditioning_latents=conditioning_latents, | |
preset=args.preset, k=args.candidates, use_deterministic_seed=seed) | |
if args.candidates == 1: | |
audio_ = gen.squeeze(0).cpu() | |
torchaudio.save(os.path.join(voice_outpath, f'{j}.wav'), audio_, 24000) | |
else: | |
candidate_dir = os.path.join(voice_outpath, str(j)) | |
os.makedirs(candidate_dir, exist_ok=True) | |
for k, g in enumerate(gen): | |
torchaudio.save(os.path.join(candidate_dir, f'{k}.wav'), g.squeeze(0).cpu(), 24000) | |
audio_ = gen[0].squeeze(0).cpu() | |
all_parts.append(audio_) | |
if args.candidates == 1: | |
full_audio = torch.cat(all_parts, dim=-1) | |
torchaudio.save(os.path.join(voice_outpath, f"{outname}.wav"), full_audio, 24000) | |
if args.produce_debug_state: | |
os.makedirs('debug_states', exist_ok=True) | |
dbg_state = (seed, texts, voice_samples, conditioning_latents) | |
torch.save(dbg_state, f'debug_states/read_debug_{selected_voice}.pth') | |
# Combine each candidate's audio clips. | |
if args.candidates > 1: | |
audio_clips = [] | |
for candidate in range(args.candidates): | |
for line in range(len(texts)): | |
wav_file = os.path.join(voice_outpath, str(line), f"{candidate}.wav") | |
audio_clips.append(load_audio(wav_file, 24000)) | |
audio_clips = torch.cat(audio_clips, dim=-1) | |
torchaudio.save(os.path.join(voice_outpath, f"{outname}_{candidate:02d}.wav"), audio_clips, 24000) | |
audio_clips = [] | |