tortoise-tts / app.py
Manmay's picture
Add application file
fca9b48
raw
history blame
5.42 kB
import os
import torch
import gradio as gr
import torchaudio
import time
from datetime import datetime
from tortoise.api import TextToSpeech
from tortoise.utils.text import split_and_recombine_text
from tortoise.utils.audio import load_audio, load_voice, load_voices
VOICE_OPTIONS = [
"angie",
"cond_latent_example",
"deniro",
"freeman",
"halle",
"lj",
"myself",
"pat2",
"snakes",
"tom",
"train_daws",
"train_dreams",
"train_grace",
"train_lescault",
"weaver",
"applejack",
"daniel",
"emma",
"geralt",
"jlaw",
"mol",
"pat",
"rainbow",
"tim_reynolds",
"train_atkins",
"train_dotrice",
"train_empire",
"train_kennard",
"train_mouse",
"william",
"random", # special option for random voice
"disabled", # special option for disabled voice
]
def inference(
text,
script,
name,
voice,
voice_b,
voice_c,
preset,
seed,
regenerate,
split_by_newline,
):
if regenerate.strip() == "":
regenerate = None
if name.strip() == "":
raise gr.Error("No name provided")
if text is None or text.strip() == "":
with open(script.name) as f:
text = f.read()
if text.strip() == "":
raise gr.Error("Please provide either text or script file with content.")
if split_by_newline == "Yes":
texts = list(filter(lambda x: x.strip() != "", text.split("\n")))
else:
texts = split_and_recombine_text(text)
os.makedirs(os.path.join("longform", name), exist_ok=True)
if regenerate is not None:
regenerate = list(map(int, regenerate.split()))
voices = [voice]
if voice_b != "disabled":
voices.append(voice_b)
if voice_c != "disabled":
voices.append(voice_c)
if len(voices) == 1:
voice_samples, conditioning_latents = load_voice(voice)
else:
voice_samples, conditioning_latents = load_voices(voices)
start_time = time.time()
all_parts = []
for j, text in enumerate(texts):
if regenerate is not None and j + 1 not in regenerate:
all_parts.append(
load_audio(os.path.join("longform", name, f"{j+1}.wav"), 24000)
)
continue
gen = tts.tts_with_preset(
text,
voice_samples=voice_samples,
conditioning_latents=conditioning_latents,
preset=preset,
k=1,
use_deterministic_seed=seed,
)
gen = gen.squeeze(0).cpu()
torchaudio.save(os.path.join("longform", name, f"{j+1}.wav"), gen, 24000)
all_parts.append(gen)
full_audio = torch.cat(all_parts, dim=-1)
os.makedirs("outputs", exist_ok=True)
torchaudio.save(os.path.join("outputs", f"{name}.wav"), full_audio, 24000)
with open("Tortoise_TTS_Runs_Scripts.log", "a") as f:
f.write(
f"{datetime.now()} | Voice: {','.join(voices)} | Text: {text} | Quality: {preset} | Time Taken (s): {time.time()-start_time} | Seed: {seed}\n"
)
output_texts = [f"({j+1}) {texts[j]}" for j in range(len(texts))]
return ((24000, full_audio.squeeze().cpu().numpy()), "\n".join(output_texts))
def main():
text = gr.Textbox(
lines=4,
label="Text (Provide either text, or upload a newline separated text file below):",
)
script = gr.File(label="Upload a text file")
name = gr.Textbox(
lines=1, label="Name of the output file / folder to store intermediate results:"
)
preset = gr.Radio(
["ultra_fast", "fast", "standard", "high_quality"],
value="fast",
label="Preset mode (determines quality with tradeoff over speed):",
type="value",
)
voice = gr.Dropdown(
VOICE_OPTIONS, value="angie", label="Select voice:", type="value"
)
voice_b = gr.Dropdown(
VOICE_OPTIONS,
value="disabled",
label="(Optional) Select second voice:",
type="value",
)
voice_c = gr.Dropdown(
VOICE_OPTIONS,
value="disabled",
label="(Optional) Select third voice:",
type="value",
)
seed = gr.Number(value=0, precision=0, label="Seed (for reproducibility):")
regenerate = gr.Textbox(
lines=1,
label="Comma-separated indices of clips to regenerate [starting from 1]",
)
split_by_newline = gr.Radio(
["Yes", "No"],
label="Split by newline (If [No], it will automatically try to find relevant splits):",
type="value",
value="No",
)
output_audio = gr.Audio(label="Combined audio:")
output_text = gr.Textbox(label="Split texts with indices:", lines=10)
interface = gr.Interface(
fn=inference,
inputs=[
text,
script,
name,
voice,
voice_b,
voice_c,
preset,
seed,
regenerate,
split_by_newline,
],
outputs=[output_audio, output_text],
)
interface.launch(share=True)
if __name__ == "__main__":
tts = TextToSpeech(kv_cache=True, use_deepspeed=True, half=True)
with open("Tortoise_TTS_Runs_Scripts.log", "a") as f:
f.write(
f"\n\n-------------------------Tortoise TTS Scripts Logs, {datetime.now()}-------------------------\n"
)
main()