Spaces:
Running
on
T4
Running
on
T4
added streaming faster inference with hifidecoder
Browse files- app.py +15 -24
- tortoise/api.py +86 -106
- tortoise/models/autoregressive.py +33 -2
- tortoise/models/hifigan_decoder.py +299 -0
- tortoise/models/stream_generator.py +1057 -0
app.py
CHANGED
@@ -73,31 +73,23 @@ def inference(
|
|
73 |
|
74 |
start_time = time.time()
|
75 |
|
76 |
-
all_parts = []
|
77 |
for j, text in enumerate(texts):
|
78 |
-
|
79 |
text,
|
80 |
voice_samples=voice_samples,
|
81 |
conditioning_latents=conditioning_latents,
|
82 |
preset="ultra_fast",
|
83 |
k=1
|
84 |
-
)
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
f"{datetime.now()} | Voice: {','.join(voices)} | Text: {text} | Time Taken (s): {time.time()-start_time} | Seed: {seed}\n"
|
94 |
-
)
|
95 |
-
|
96 |
-
output_texts = [f"({j+1}) {texts[j]}" for j in range(len(texts))]
|
97 |
-
|
98 |
-
return ((24000, full_audio.squeeze().cpu().numpy()), "\n".join(output_texts))
|
99 |
-
|
100 |
-
|
101 |
def main():
|
102 |
title = "Tortoise TTS 🐢"
|
103 |
description = """
|
@@ -130,9 +122,8 @@ def main():
|
|
130 |
value="No",
|
131 |
)
|
132 |
|
133 |
-
output_audio = gr.Audio(label="
|
134 |
-
|
135 |
-
|
136 |
interface = gr.Interface(
|
137 |
fn=inference,
|
138 |
inputs=[
|
@@ -144,9 +135,9 @@ def main():
|
|
144 |
],
|
145 |
title=title,
|
146 |
description=description,
|
147 |
-
outputs=[output_audio
|
148 |
)
|
149 |
-
interface.launch()
|
150 |
|
151 |
|
152 |
if __name__ == "__main__":
|
|
|
73 |
|
74 |
start_time = time.time()
|
75 |
|
76 |
+
# all_parts = []
|
77 |
for j, text in enumerate(texts):
|
78 |
+
for audio_frame in tts.tts_with_preset(
|
79 |
text,
|
80 |
voice_samples=voice_samples,
|
81 |
conditioning_latents=conditioning_latents,
|
82 |
preset="ultra_fast",
|
83 |
k=1
|
84 |
+
):
|
85 |
+
# print("Time taken: ", time.time() - start_time)
|
86 |
+
# all_parts.append(audio_frame)
|
87 |
+
yield (24000, audio_frame.cpu().detach().numpy())
|
88 |
+
|
89 |
+
# wav = torch.cat(all_parts, dim=0).unsqueeze(0)
|
90 |
+
# print(wav.shape)
|
91 |
+
# torchaudio.save("output.wav", wav.cpu(), 24000)
|
92 |
+
# yield (None, gr.make_waveform(audio="output.wav",))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
def main():
|
94 |
title = "Tortoise TTS 🐢"
|
95 |
description = """
|
|
|
122 |
value="No",
|
123 |
)
|
124 |
|
125 |
+
output_audio = gr.Audio(label="streaming audio:", streaming=True, autoplay=True)
|
126 |
+
# download_audio = gr.Audio(label="dowanload audio:")
|
|
|
127 |
interface = gr.Interface(
|
128 |
fn=inference,
|
129 |
inputs=[
|
|
|
135 |
],
|
136 |
title=title,
|
137 |
description=description,
|
138 |
+
outputs=[output_audio],
|
139 |
)
|
140 |
+
interface.queue().launch()
|
141 |
|
142 |
|
143 |
if __name__ == "__main__":
|
tortoise/api.py
CHANGED
@@ -8,7 +8,7 @@ import torch
|
|
8 |
import torch.nn.functional as F
|
9 |
import progressbar
|
10 |
import torchaudio
|
11 |
-
|
12 |
from tortoise.models.classifier import AudioMiniEncoderWithClassifierHead
|
13 |
from tortoise.models.diffusion_decoder import DiffusionTts
|
14 |
from tortoise.models.autoregressive import UnifiedVoice
|
@@ -16,6 +16,7 @@ from tqdm import tqdm
|
|
16 |
from tortoise.models.arch_util import TorchMelSpectrogram
|
17 |
from tortoise.models.clvp import CLVP
|
18 |
from tortoise.models.cvvp import CVVP
|
|
|
19 |
from tortoise.models.random_latent_generator import RandomLatentConverter
|
20 |
from tortoise.models.vocoder import UnivNetGenerator
|
21 |
from tortoise.utils.audio import wav_to_univnet_mel, denormalize_tacotron_mel
|
@@ -23,19 +24,18 @@ from tortoise.utils.diffusion import SpacedDiffusion, space_timesteps, get_named
|
|
23 |
from tortoise.utils.tokenizer import VoiceBpeTokenizer
|
24 |
from tortoise.utils.wav2vec_alignment import Wav2VecAlignment
|
25 |
from contextlib import contextmanager
|
|
|
|
|
26 |
pbar = None
|
27 |
-
|
28 |
DEFAULT_MODELS_DIR = os.path.join(os.path.expanduser('~'), '.cache', 'tortoise', 'models')
|
29 |
MODELS_DIR = os.environ.get('TORTOISE_MODELS_DIR', DEFAULT_MODELS_DIR)
|
|
|
30 |
MODELS = {
|
31 |
-
'autoregressive.pth': 'https://huggingface.co/
|
32 |
-
'classifier.pth': 'https://huggingface.co/
|
33 |
-
'
|
34 |
-
'
|
35 |
-
'diffusion_decoder.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/diffusion_decoder.pth',
|
36 |
-
'vocoder.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/vocoder.pth',
|
37 |
-
'rlg_auto.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/rlg_auto.pth',
|
38 |
-
'rlg_diffuser.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/rlg_diffuser.pth',
|
39 |
}
|
40 |
|
41 |
def download_models(specific_models=None):
|
@@ -64,6 +64,7 @@ def download_models(specific_models=None):
|
|
64 |
continue
|
65 |
print(f'Downloading {model_name} from {url}...')
|
66 |
request.urlretrieve(url, model_path, show_progress)
|
|
|
67 |
print('Done.')
|
68 |
|
69 |
|
@@ -238,7 +239,6 @@ class TextToSpeech:
|
|
238 |
if os.path.exists(f'{models_dir}/autoregressive.ptt'):
|
239 |
# Assume this is a traced directory.
|
240 |
self.autoregressive = torch.jit.load(f'{models_dir}/autoregressive.ptt')
|
241 |
-
self.diffusion = torch.jit.load(f'{models_dir}/diffusion_decoder.ptt')
|
242 |
else:
|
243 |
self.autoregressive = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30,
|
244 |
model_dim=1024,
|
@@ -246,19 +246,15 @@ class TextToSpeech:
|
|
246 |
train_solo_embeddings=False).cuda().eval()
|
247 |
self.autoregressive.load_state_dict(torch.load(get_model_path('autoregressive.pth', models_dir)), strict=False)
|
248 |
self.autoregressive.post_init_gpt2_config(use_deepspeed=use_deepspeed, kv_cache=kv_cache, half=self.half)
|
249 |
-
|
250 |
-
self.diffusion = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200,
|
251 |
-
in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16,
|
252 |
-
layer_drop=0, unconditioned_percentage=0).cuda().eval()
|
253 |
-
self.diffusion.load_state_dict(torch.load(get_model_path('diffusion_decoder.pth', models_dir)))
|
254 |
-
|
255 |
-
self.vocoder = UnivNetGenerator().cuda()
|
256 |
-
self.vocoder.load_state_dict(torch.load(get_model_path('vocoder.pth', models_dir), map_location=torch.device('cpu'))['model_g'])
|
257 |
-
self.vocoder.eval(inference=True)
|
258 |
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
# Random latent generators (RLGs) are loaded lazily.
|
260 |
self.rlg_auto = None
|
261 |
-
self.rlg_diffusion = None
|
262 |
def get_conditioning_latents(self, voice_samples, return_mels=False):
|
263 |
"""
|
264 |
Transforms one or more voice_samples into a tuple (autoregressive_conditioning_latent, diffusion_conditioning_latent).
|
@@ -277,31 +273,18 @@ class TextToSpeech:
|
|
277 |
auto_conds = torch.stack(auto_conds, dim=1)
|
278 |
auto_latent = self.autoregressive.get_conditioning(auto_conds)
|
279 |
|
280 |
-
diffusion_conds = []
|
281 |
-
for sample in voice_samples:
|
282 |
-
# The diffuser operates at a sample rate of 24000 (except for the latent inputs)
|
283 |
-
sample = torchaudio.functional.resample(sample, 22050, 24000)
|
284 |
-
sample = pad_or_truncate(sample, 102400)
|
285 |
-
cond_mel = wav_to_univnet_mel(sample.to(self.device), do_normalization=False, device=self.device)
|
286 |
-
diffusion_conds.append(cond_mel)
|
287 |
-
diffusion_conds = torch.stack(diffusion_conds, dim=1)
|
288 |
-
|
289 |
-
diffusion_latent = self.diffusion.get_conditioning(diffusion_conds)
|
290 |
-
|
291 |
if return_mels:
|
292 |
-
return auto_latent
|
293 |
else:
|
294 |
-
return auto_latent
|
295 |
|
296 |
def get_random_conditioning_latents(self):
|
297 |
# Lazy-load the RLG models.
|
298 |
if self.rlg_auto is None:
|
299 |
self.rlg_auto = RandomLatentConverter(1024).eval()
|
300 |
self.rlg_auto.load_state_dict(torch.load(get_model_path('rlg_auto.pth', self.models_dir), map_location=torch.device('cpu')))
|
301 |
-
self.rlg_diffusion = RandomLatentConverter(2048).eval()
|
302 |
-
self.rlg_diffusion.load_state_dict(torch.load(get_model_path('rlg_diffuser.pth', self.models_dir), map_location=torch.device('cpu')))
|
303 |
with torch.no_grad():
|
304 |
-
return self.rlg_auto(torch.tensor([0.0]))
|
305 |
|
306 |
def tts_with_preset(self, text, preset='fast', **kwargs):
|
307 |
"""
|
@@ -317,17 +300,33 @@ class TextToSpeech:
|
|
317 |
'cond_free_k': 2.0, 'diffusion_temperature': 1.0}
|
318 |
# Presets are defined here.
|
319 |
presets = {
|
320 |
-
'ultra_fast': {'num_autoregressive_samples': 1, 'diffusion_iterations':
|
321 |
'fast': {'num_autoregressive_samples': 32, 'diffusion_iterations': 50},
|
322 |
'standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 200},
|
323 |
'high_quality': {'num_autoregressive_samples': 256, 'diffusion_iterations': 400},
|
324 |
}
|
325 |
settings.update(presets[preset])
|
326 |
settings.update(kwargs) # allow overriding of preset settings with kwargs
|
327 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
328 |
|
329 |
def tts(self, text, voice_samples=None, conditioning_latents=None, k=1, verbose=True, use_deterministic_seed=None,
|
330 |
-
return_deterministic_state=False,
|
331 |
# autoregressive generation parameters follow
|
332 |
num_autoregressive_samples=512, temperature=.8, length_penalty=1, repetition_penalty=2.0, top_p=.8, max_mel_tokens=500,
|
333 |
# CVVP parameters follow
|
@@ -353,13 +352,6 @@ class TextToSpeech:
|
|
353 |
of long silences or "uhhhhhhs", etc.
|
354 |
:param top_p: P value used in nucleus sampling. (0,1]. Lower values mean the decoder produces more "likely" (aka boring) outputs.
|
355 |
:param max_mel_tokens: Restricts the output length. (0,600] integer. Each unit is 1/20 of a second.
|
356 |
-
:param typical_sampling: Turns typical sampling on or off. This sampling mode is discussed in this paper: https://arxiv.org/abs/2202.00666
|
357 |
-
I was interested in the premise, but the results were not as good as I was hoping. This is off by default, but
|
358 |
-
could use some tuning.
|
359 |
-
:param typical_mass: The typical_mass parameter from the typical_sampling algorithm.
|
360 |
-
~~CLVP-CVVP KNOBS~~
|
361 |
-
:param cvvp_amount: Controls the influence of the CVVP model in selecting the best output from the autoregressive model.
|
362 |
-
[0,1]. Values closer to 1 mean the CVVP model is more important, 0 disables the CVVP model.
|
363 |
~~DIFFUSION KNOBS~~
|
364 |
:param diffusion_iterations: Number of diffusion steps to perform. [0,4000]. More steps means the network has more chances to iteratively refine
|
365 |
the output, which should theoretically mean a higher quality output. Generally a value above 250 is not noticeably better,
|
@@ -385,17 +377,11 @@ class TextToSpeech:
|
|
385 |
text_tokens = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).to(self.device)
|
386 |
text_tokens = F.pad(text_tokens, (0, 1)) # This may not be necessary.
|
387 |
assert text_tokens.shape[-1] < 400, 'Too much text provided. Break the text up into separate segments and re-try inference.'
|
388 |
-
auto_conds = None
|
389 |
if voice_samples is not None:
|
390 |
-
auto_conditioning
|
391 |
-
elif conditioning_latents is not None:
|
392 |
-
auto_conditioning, diffusion_conditioning = conditioning_latents
|
393 |
else:
|
394 |
-
auto_conditioning
|
395 |
auto_conditioning = auto_conditioning.to(self.device)
|
396 |
-
diffusion_conditioning = diffusion_conditioning.to(self.device)
|
397 |
-
|
398 |
-
diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=diffusion_iterations, cond_free=cond_free, cond_free_k=cond_free_k)
|
399 |
|
400 |
with torch.no_grad():
|
401 |
calm_token = 83 # This is the token for coding silence, which is fixed in place with "fix_autoregressive_output"
|
@@ -404,58 +390,52 @@ class TextToSpeech:
|
|
404 |
with torch.autocast(
|
405 |
device_type="cuda" , dtype=torch.float16, enabled=self.half
|
406 |
):
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
424 |
|
425 |
-
if verbose:
|
426 |
-
print("Transforming autoregressive outputs into audio..")
|
427 |
-
wav_candidates = []
|
428 |
-
latents = best_latents
|
429 |
-
# Find the first occurrence of the "calm" token and trim the codes to that.
|
430 |
-
ctokens = 0
|
431 |
-
for k in range(codes.shape[-1]):
|
432 |
-
if codes[0, k] == calm_token:
|
433 |
-
ctokens += 1
|
434 |
-
else:
|
435 |
-
ctokens = 0
|
436 |
-
if ctokens > 8: # 8 tokens gives the diffusion model some "breathing room" to terminate speech.
|
437 |
-
latents = latents[:, :k]
|
438 |
-
break
|
439 |
-
mel = do_spectrogram_diffusion(self.diffusion, diffuser, latents, diffusion_conditioning, temperature=diffusion_temperature,
|
440 |
-
verbose=verbose)
|
441 |
-
wav = self.vocoder.inference(mel)
|
442 |
-
wav_candidates.append(wav.cpu())
|
443 |
-
|
444 |
-
def potentially_redact(clip, text):
|
445 |
-
if self.enable_redaction:
|
446 |
-
return self.aligner.redact(clip.squeeze(1), text).unsqueeze(1)
|
447 |
-
return clip
|
448 |
-
wav_candidates = [potentially_redact(wav_candidate, text) for wav_candidate in wav_candidates]
|
449 |
-
|
450 |
-
if len(wav_candidates) > 1:
|
451 |
-
res = wav_candidates
|
452 |
-
else:
|
453 |
-
res = wav_candidates[0]
|
454 |
-
|
455 |
-
if return_deterministic_state:
|
456 |
-
return res, (deterministic_seed, text, voice_samples, conditioning_latents)
|
457 |
-
else:
|
458 |
-
return res
|
459 |
def deterministic_state(self, seed=None):
|
460 |
"""
|
461 |
Sets the random seeds that tortoise uses to the current time() and returns that seed so results can be
|
|
|
8 |
import torch.nn.functional as F
|
9 |
import progressbar
|
10 |
import torchaudio
|
11 |
+
import numpy as np
|
12 |
from tortoise.models.classifier import AudioMiniEncoderWithClassifierHead
|
13 |
from tortoise.models.diffusion_decoder import DiffusionTts
|
14 |
from tortoise.models.autoregressive import UnifiedVoice
|
|
|
16 |
from tortoise.models.arch_util import TorchMelSpectrogram
|
17 |
from tortoise.models.clvp import CLVP
|
18 |
from tortoise.models.cvvp import CVVP
|
19 |
+
from tortoise.models.hifigan_decoder import HifiganGenerator
|
20 |
from tortoise.models.random_latent_generator import RandomLatentConverter
|
21 |
from tortoise.models.vocoder import UnivNetGenerator
|
22 |
from tortoise.utils.audio import wav_to_univnet_mel, denormalize_tacotron_mel
|
|
|
24 |
from tortoise.utils.tokenizer import VoiceBpeTokenizer
|
25 |
from tortoise.utils.wav2vec_alignment import Wav2VecAlignment
|
26 |
from contextlib import contextmanager
|
27 |
+
from tortoise.models.stream_generator import init_stream_support
|
28 |
+
# from huggingface_hub import hf_hub_download
|
29 |
pbar = None
|
30 |
+
init_stream_support()
|
31 |
DEFAULT_MODELS_DIR = os.path.join(os.path.expanduser('~'), '.cache', 'tortoise', 'models')
|
32 |
MODELS_DIR = os.environ.get('TORTOISE_MODELS_DIR', DEFAULT_MODELS_DIR)
|
33 |
+
|
34 |
MODELS = {
|
35 |
+
'autoregressive.pth': 'https://huggingface.co/Manmay/tortoise-tts/blob/main/autoregressive.pth',
|
36 |
+
'classifier.pth': 'https://huggingface.co/Manmay/tortoise-tts/blob/main/classifier.pth',
|
37 |
+
'rlg_auto.pth': 'https://huggingface.co/Manmay/tortoise-tts/blob/main/rlg_auto.pth',
|
38 |
+
'hifidecoder.pth': 'https://huggingface.co/Manmay/tortoise-tts/blob/main/hifidecoder.pth',
|
|
|
|
|
|
|
|
|
39 |
}
|
40 |
|
41 |
def download_models(specific_models=None):
|
|
|
64 |
continue
|
65 |
print(f'Downloading {model_name} from {url}...')
|
66 |
request.urlretrieve(url, model_path, show_progress)
|
67 |
+
# hf_hub_download(repo_id="Manmay/tortoise-tts", filename=model_name, cache_dir=MODELS_DIR)
|
68 |
print('Done.')
|
69 |
|
70 |
|
|
|
239 |
if os.path.exists(f'{models_dir}/autoregressive.ptt'):
|
240 |
# Assume this is a traced directory.
|
241 |
self.autoregressive = torch.jit.load(f'{models_dir}/autoregressive.ptt')
|
|
|
242 |
else:
|
243 |
self.autoregressive = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30,
|
244 |
model_dim=1024,
|
|
|
246 |
train_solo_embeddings=False).cuda().eval()
|
247 |
self.autoregressive.load_state_dict(torch.load(get_model_path('autoregressive.pth', models_dir)), strict=False)
|
248 |
self.autoregressive.post_init_gpt2_config(use_deepspeed=use_deepspeed, kv_cache=kv_cache, half=self.half)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
|
250 |
+
self.hifi_decoder = HifiganGenerator(in_channels=1024, out_channels = 1, resblock_type = "1",
|
251 |
+
resblock_dilation_sizes = [[1, 3, 5], [1, 3, 5], [1, 3, 5]], resblock_kernel_sizes = [3, 7, 11],
|
252 |
+
upsample_kernel_sizes = [16, 16, 4, 4], upsample_initial_channel = 512, upsample_factors = [8, 8, 2, 2],
|
253 |
+
cond_channels=1024).cuda().eval()
|
254 |
+
hifi_model = torch.load(get_model_path('hifidecoder.pth'))
|
255 |
+
self.hifi_decoder.load_state_dict(hifi_model, strict=False)
|
256 |
# Random latent generators (RLGs) are loaded lazily.
|
257 |
self.rlg_auto = None
|
|
|
258 |
def get_conditioning_latents(self, voice_samples, return_mels=False):
|
259 |
"""
|
260 |
Transforms one or more voice_samples into a tuple (autoregressive_conditioning_latent, diffusion_conditioning_latent).
|
|
|
273 |
auto_conds = torch.stack(auto_conds, dim=1)
|
274 |
auto_latent = self.autoregressive.get_conditioning(auto_conds)
|
275 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
if return_mels:
|
277 |
+
return auto_latent
|
278 |
else:
|
279 |
+
return auto_latent
|
280 |
|
281 |
def get_random_conditioning_latents(self):
|
282 |
# Lazy-load the RLG models.
|
283 |
if self.rlg_auto is None:
|
284 |
self.rlg_auto = RandomLatentConverter(1024).eval()
|
285 |
self.rlg_auto.load_state_dict(torch.load(get_model_path('rlg_auto.pth', self.models_dir), map_location=torch.device('cpu')))
|
|
|
|
|
286 |
with torch.no_grad():
|
287 |
+
return self.rlg_auto(torch.tensor([0.0]))
|
288 |
|
289 |
def tts_with_preset(self, text, preset='fast', **kwargs):
|
290 |
"""
|
|
|
300 |
'cond_free_k': 2.0, 'diffusion_temperature': 1.0}
|
301 |
# Presets are defined here.
|
302 |
presets = {
|
303 |
+
'ultra_fast': {'num_autoregressive_samples': 1, 'diffusion_iterations': 10},
|
304 |
'fast': {'num_autoregressive_samples': 32, 'diffusion_iterations': 50},
|
305 |
'standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 200},
|
306 |
'high_quality': {'num_autoregressive_samples': 256, 'diffusion_iterations': 400},
|
307 |
}
|
308 |
settings.update(presets[preset])
|
309 |
settings.update(kwargs) # allow overriding of preset settings with kwargs
|
310 |
+
for audio_frame in self.tts(text, **settings):
|
311 |
+
yield audio_frame
|
312 |
+
|
313 |
+
def handle_chunks(self, wav_gen, wav_gen_prev, wav_overlap, overlap_len):
|
314 |
+
"""Handle chunk formatting in streaming mode"""
|
315 |
+
wav_chunk = wav_gen[:-overlap_len]
|
316 |
+
if wav_gen_prev is not None:
|
317 |
+
wav_chunk = wav_gen[(wav_gen_prev.shape[0] - overlap_len) : -overlap_len]
|
318 |
+
if wav_overlap is not None:
|
319 |
+
crossfade_wav = wav_chunk[:overlap_len]
|
320 |
+
crossfade_wav = crossfade_wav * torch.linspace(0.0, 1.0, overlap_len).to(crossfade_wav.device)
|
321 |
+
wav_chunk[:overlap_len] = wav_overlap * torch.linspace(1.0, 0.0, overlap_len).to(wav_overlap.device)
|
322 |
+
wav_chunk[:overlap_len] += crossfade_wav
|
323 |
+
wav_overlap = wav_gen[-overlap_len:]
|
324 |
+
wav_gen_prev = wav_gen
|
325 |
+
return wav_chunk, wav_gen_prev, wav_overlap
|
326 |
+
|
327 |
|
328 |
def tts(self, text, voice_samples=None, conditioning_latents=None, k=1, verbose=True, use_deterministic_seed=None,
|
329 |
+
return_deterministic_state=False, overlap_wav_len=1024, stream_chunk_size=40,
|
330 |
# autoregressive generation parameters follow
|
331 |
num_autoregressive_samples=512, temperature=.8, length_penalty=1, repetition_penalty=2.0, top_p=.8, max_mel_tokens=500,
|
332 |
# CVVP parameters follow
|
|
|
352 |
of long silences or "uhhhhhhs", etc.
|
353 |
:param top_p: P value used in nucleus sampling. (0,1]. Lower values mean the decoder produces more "likely" (aka boring) outputs.
|
354 |
:param max_mel_tokens: Restricts the output length. (0,600] integer. Each unit is 1/20 of a second.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
355 |
~~DIFFUSION KNOBS~~
|
356 |
:param diffusion_iterations: Number of diffusion steps to perform. [0,4000]. More steps means the network has more chances to iteratively refine
|
357 |
the output, which should theoretically mean a higher quality output. Generally a value above 250 is not noticeably better,
|
|
|
377 |
text_tokens = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).to(self.device)
|
378 |
text_tokens = F.pad(text_tokens, (0, 1)) # This may not be necessary.
|
379 |
assert text_tokens.shape[-1] < 400, 'Too much text provided. Break the text up into separate segments and re-try inference.'
|
|
|
380 |
if voice_samples is not None:
|
381 |
+
auto_conditioning = self.get_conditioning_latents(voice_samples, return_mels=False)
|
|
|
|
|
382 |
else:
|
383 |
+
auto_conditioning = self.get_random_conditioning_latents()
|
384 |
auto_conditioning = auto_conditioning.to(self.device)
|
|
|
|
|
|
|
385 |
|
386 |
with torch.no_grad():
|
387 |
calm_token = 83 # This is the token for coding silence, which is fixed in place with "fix_autoregressive_output"
|
|
|
390 |
with torch.autocast(
|
391 |
device_type="cuda" , dtype=torch.float16, enabled=self.half
|
392 |
):
|
393 |
+
fake_inputs = self.autoregressive.compute_embeddings(
|
394 |
+
auto_conditioning,
|
395 |
+
text_tokens,
|
396 |
+
)
|
397 |
+
gpt_generator = self.autoregressive.get_generator(
|
398 |
+
fake_inputs=fake_inputs,
|
399 |
+
top_k=50,
|
400 |
+
top_p=top_p,
|
401 |
+
temperature=temperature,
|
402 |
+
do_sample=True,
|
403 |
+
num_beams=1,
|
404 |
+
num_return_sequences=1,
|
405 |
+
length_penalty=float(length_penalty),
|
406 |
+
repetition_penalty=float(repetition_penalty),
|
407 |
+
output_attentions=False,
|
408 |
+
output_hidden_states=True,
|
409 |
+
**hf_generate_kwargs,
|
410 |
+
)
|
411 |
+
all_latents = []
|
412 |
+
codes_ = []
|
413 |
+
wav_gen_prev = None
|
414 |
+
wav_overlap = None
|
415 |
+
is_end = False
|
416 |
+
first_buffer = 60
|
417 |
+
while not is_end:
|
418 |
+
try:
|
419 |
+
with torch.autocast(
|
420 |
+
device_type="cuda", dtype=torch.float16, enabled=self.half
|
421 |
+
):
|
422 |
+
codes, latent = next(gpt_generator)
|
423 |
+
all_latents += [latent]
|
424 |
+
codes_ += [codes]
|
425 |
+
except StopIteration:
|
426 |
+
is_end = True
|
427 |
+
|
428 |
+
if is_end or (stream_chunk_size > 0 and len(codes_) >= max(stream_chunk_size, first_buffer)):
|
429 |
+
first_buffer = 0
|
430 |
+
gpt_latents = torch.cat(all_latents, dim=0)[None, :]
|
431 |
+
wav_gen = self.hifi_decoder.inference(gpt_latents.cuda(), auto_conditioning)
|
432 |
+
wav_gen = wav_gen.squeeze()
|
433 |
+
wav_chunk, wav_gen_prev, wav_overlap = self.handle_chunks(
|
434 |
+
wav_gen.squeeze(), wav_gen_prev, wav_overlap, overlap_wav_len
|
435 |
+
)
|
436 |
+
codes_ = []
|
437 |
+
yield wav_chunk
|
438 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
439 |
def deterministic_state(self, seed=None):
|
440 |
"""
|
441 |
Sets the random seeds that tortoise uses to the current time() and returns that seed so results can be
|
tortoise/models/autoregressive.py
CHANGED
@@ -38,6 +38,7 @@ class GPT2InferenceModel(GPT2PreTrainedModel):
|
|
38 |
self.transformer = gpt
|
39 |
self.text_pos_embedding = text_pos_emb
|
40 |
self.embeddings = embeddings
|
|
|
41 |
self.lm_head = nn.Sequential(norm, linear)
|
42 |
self.kv_cache = kv_cache
|
43 |
|
@@ -509,7 +510,28 @@ class UnifiedVoice(nn.Module):
|
|
509 |
loss_text = F.cross_entropy(text_logits, text_targets.long())
|
510 |
loss_mel = F.cross_entropy(mel_logits, mel_targets.long())
|
511 |
return loss_text.mean(), loss_mel.mean(), mel_logits
|
512 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
513 |
def inference_speech(self, speech_conditioning_latent, text_inputs, input_tokens=None, num_return_sequences=1,
|
514 |
max_generate_length=None, typical_sampling=False, typical_mass=.9, **hf_generate_kwargs):
|
515 |
|
@@ -540,7 +562,16 @@ class UnifiedVoice(nn.Module):
|
|
540 |
num_return_sequences=num_return_sequences, **hf_generate_kwargs)
|
541 |
return gen[:, trunc_index:]
|
542 |
|
543 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
544 |
if __name__ == '__main__':
|
545 |
gpt = UnifiedVoice(model_dim=256, heads=4, train_solo_embeddings=True, use_mel_codes_as_input=True, max_conditioning_inputs=4)
|
546 |
l = gpt(torch.randn(2, 3, 80, 800),
|
|
|
38 |
self.transformer = gpt
|
39 |
self.text_pos_embedding = text_pos_emb
|
40 |
self.embeddings = embeddings
|
41 |
+
self.final_norm = norm
|
42 |
self.lm_head = nn.Sequential(norm, linear)
|
43 |
self.kv_cache = kv_cache
|
44 |
|
|
|
510 |
loss_text = F.cross_entropy(text_logits, text_targets.long())
|
511 |
loss_mel = F.cross_entropy(mel_logits, mel_targets.long())
|
512 |
return loss_text.mean(), loss_mel.mean(), mel_logits
|
513 |
+
def compute_embeddings(
|
514 |
+
self,
|
515 |
+
cond_latents,
|
516 |
+
text_inputs,
|
517 |
+
):
|
518 |
+
text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token)
|
519 |
+
text_inputs = F.pad(text_inputs, (1, 0), value=self.start_text_token)
|
520 |
+
emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs)
|
521 |
+
conds = cond_latents.unsqueeze(1)
|
522 |
+
emb = torch.cat([conds, emb], dim=1)
|
523 |
+
self.inference_model.store_mel_emb(emb)
|
524 |
+
gpt_inputs = torch.full(
|
525 |
+
(
|
526 |
+
emb.shape[0],
|
527 |
+
emb.shape[1] + 1, # +1 for the start_mel_token
|
528 |
+
),
|
529 |
+
fill_value=1,
|
530 |
+
dtype=torch.long,
|
531 |
+
device=text_inputs.device,
|
532 |
+
)
|
533 |
+
gpt_inputs[:, -1] = self.start_mel_token
|
534 |
+
return gpt_inputs
|
535 |
def inference_speech(self, speech_conditioning_latent, text_inputs, input_tokens=None, num_return_sequences=1,
|
536 |
max_generate_length=None, typical_sampling=False, typical_mass=.9, **hf_generate_kwargs):
|
537 |
|
|
|
562 |
num_return_sequences=num_return_sequences, **hf_generate_kwargs)
|
563 |
return gen[:, trunc_index:]
|
564 |
|
565 |
+
def get_generator(self, fake_inputs, **hf_generate_kwargs):
|
566 |
+
return self.inference_model.generate_stream(
|
567 |
+
fake_inputs,
|
568 |
+
bos_token_id=self.start_mel_token,
|
569 |
+
pad_token_id=self.stop_mel_token,
|
570 |
+
eos_token_id=self.stop_mel_token,
|
571 |
+
max_length=500,
|
572 |
+
do_stream=True,
|
573 |
+
**hf_generate_kwargs,
|
574 |
+
)
|
575 |
if __name__ == '__main__':
|
576 |
gpt = UnifiedVoice(model_dim=256, heads=4, train_solo_embeddings=True, use_mel_codes_as_input=True, max_conditioning_inputs=4)
|
577 |
l = gpt(torch.randn(2, 3, 80, 800),
|
tortoise/models/hifigan_decoder.py
ADDED
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# adopted from https://github.com/jik876/hifi-gan/blob/master/models.py
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import Conv1d, ConvTranspose1d
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from torch.nn.utils import remove_weight_norm, weight_norm
|
7 |
+
|
8 |
+
LRELU_SLOPE = 0.1
|
9 |
+
|
10 |
+
|
11 |
+
def get_padding(k, d):
|
12 |
+
return int((k * d - d) / 2)
|
13 |
+
|
14 |
+
|
15 |
+
class ResBlock1(torch.nn.Module):
|
16 |
+
"""Residual Block Type 1. It has 3 convolutional layers in each convolutional block.
|
17 |
+
|
18 |
+
Network::
|
19 |
+
|
20 |
+
x -> lrelu -> conv1_1 -> conv1_2 -> conv1_3 -> z -> lrelu -> conv2_1 -> conv2_2 -> conv2_3 -> o -> + -> o
|
21 |
+
|--------------------------------------------------------------------------------------------------|
|
22 |
+
|
23 |
+
|
24 |
+
Args:
|
25 |
+
channels (int): number of hidden channels for the convolutional layers.
|
26 |
+
kernel_size (int): size of the convolution filter in each layer.
|
27 |
+
dilations (list): list of dilation value for each conv layer in a block.
|
28 |
+
"""
|
29 |
+
|
30 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
31 |
+
super().__init__()
|
32 |
+
self.convs1 = nn.ModuleList(
|
33 |
+
[
|
34 |
+
weight_norm(
|
35 |
+
Conv1d(
|
36 |
+
channels,
|
37 |
+
channels,
|
38 |
+
kernel_size,
|
39 |
+
1,
|
40 |
+
dilation=dilation[0],
|
41 |
+
padding=get_padding(kernel_size, dilation[0]),
|
42 |
+
)
|
43 |
+
),
|
44 |
+
weight_norm(
|
45 |
+
Conv1d(
|
46 |
+
channels,
|
47 |
+
channels,
|
48 |
+
kernel_size,
|
49 |
+
1,
|
50 |
+
dilation=dilation[1],
|
51 |
+
padding=get_padding(kernel_size, dilation[1]),
|
52 |
+
)
|
53 |
+
),
|
54 |
+
weight_norm(
|
55 |
+
Conv1d(
|
56 |
+
channels,
|
57 |
+
channels,
|
58 |
+
kernel_size,
|
59 |
+
1,
|
60 |
+
dilation=dilation[2],
|
61 |
+
padding=get_padding(kernel_size, dilation[2]),
|
62 |
+
)
|
63 |
+
),
|
64 |
+
]
|
65 |
+
)
|
66 |
+
|
67 |
+
self.convs2 = nn.ModuleList(
|
68 |
+
[
|
69 |
+
weight_norm(
|
70 |
+
Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))
|
71 |
+
),
|
72 |
+
weight_norm(
|
73 |
+
Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))
|
74 |
+
),
|
75 |
+
weight_norm(
|
76 |
+
Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))
|
77 |
+
),
|
78 |
+
]
|
79 |
+
)
|
80 |
+
|
81 |
+
def forward(self, x):
|
82 |
+
"""
|
83 |
+
Args:
|
84 |
+
x (Tensor): input tensor.
|
85 |
+
Returns:
|
86 |
+
Tensor: output tensor.
|
87 |
+
Shapes:
|
88 |
+
x: [B, C, T]
|
89 |
+
"""
|
90 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
91 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
92 |
+
xt = c1(xt)
|
93 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
94 |
+
xt = c2(xt)
|
95 |
+
x = xt + x
|
96 |
+
return x
|
97 |
+
|
98 |
+
def remove_weight_norm(self):
|
99 |
+
for l in self.convs1:
|
100 |
+
remove_weight_norm(l)
|
101 |
+
for l in self.convs2:
|
102 |
+
remove_weight_norm(l)
|
103 |
+
|
104 |
+
|
105 |
+
class ResBlock2(torch.nn.Module):
|
106 |
+
"""Residual Block Type 2. It has 1 convolutional layers in each convolutional block.
|
107 |
+
|
108 |
+
Network::
|
109 |
+
|
110 |
+
x -> lrelu -> conv1-> -> z -> lrelu -> conv2-> o -> + -> o
|
111 |
+
|---------------------------------------------------|
|
112 |
+
|
113 |
+
|
114 |
+
Args:
|
115 |
+
channels (int): number of hidden channels for the convolutional layers.
|
116 |
+
kernel_size (int): size of the convolution filter in each layer.
|
117 |
+
dilations (list): list of dilation value for each conv layer in a block.
|
118 |
+
"""
|
119 |
+
|
120 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
121 |
+
super().__init__()
|
122 |
+
self.convs = nn.ModuleList(
|
123 |
+
[
|
124 |
+
weight_norm(
|
125 |
+
Conv1d(
|
126 |
+
channels,
|
127 |
+
channels,
|
128 |
+
kernel_size,
|
129 |
+
1,
|
130 |
+
dilation=dilation[0],
|
131 |
+
padding=get_padding(kernel_size, dilation[0]),
|
132 |
+
)
|
133 |
+
),
|
134 |
+
weight_norm(
|
135 |
+
Conv1d(
|
136 |
+
channels,
|
137 |
+
channels,
|
138 |
+
kernel_size,
|
139 |
+
1,
|
140 |
+
dilation=dilation[1],
|
141 |
+
padding=get_padding(kernel_size, dilation[1]),
|
142 |
+
)
|
143 |
+
),
|
144 |
+
]
|
145 |
+
)
|
146 |
+
|
147 |
+
def forward(self, x):
|
148 |
+
for c in self.convs:
|
149 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
150 |
+
xt = c(xt)
|
151 |
+
x = xt + x
|
152 |
+
return x
|
153 |
+
|
154 |
+
def remove_weight_norm(self):
|
155 |
+
for l in self.convs:
|
156 |
+
remove_weight_norm(l)
|
157 |
+
|
158 |
+
|
159 |
+
class HifiganGenerator(torch.nn.Module):
|
160 |
+
def __init__(
|
161 |
+
self,
|
162 |
+
in_channels,
|
163 |
+
out_channels,
|
164 |
+
resblock_type,
|
165 |
+
resblock_dilation_sizes,
|
166 |
+
resblock_kernel_sizes,
|
167 |
+
upsample_kernel_sizes,
|
168 |
+
upsample_initial_channel,
|
169 |
+
upsample_factors,
|
170 |
+
inference_padding=5,
|
171 |
+
cond_channels=0,
|
172 |
+
conv_pre_weight_norm=True,
|
173 |
+
conv_post_weight_norm=True,
|
174 |
+
conv_post_bias=True,
|
175 |
+
):
|
176 |
+
r"""HiFiGAN Generator with Multi-Receptive Field Fusion (MRF)
|
177 |
+
|
178 |
+
Network:
|
179 |
+
x -> lrelu -> upsampling_layer -> resblock1_k1x1 -> z1 -> + -> z_sum / #resblocks -> lrelu -> conv_post_7x1 -> tanh -> o
|
180 |
+
.. -> zI ---|
|
181 |
+
resblockN_kNx1 -> zN ---'
|
182 |
+
|
183 |
+
Args:
|
184 |
+
in_channels (int): number of input tensor channels.
|
185 |
+
out_channels (int): number of output tensor channels.
|
186 |
+
resblock_type (str): type of the `ResBlock`. '1' or '2'.
|
187 |
+
resblock_dilation_sizes (List[List[int]]): list of dilation values in each layer of a `ResBlock`.
|
188 |
+
resblock_kernel_sizes (List[int]): list of kernel sizes for each `ResBlock`.
|
189 |
+
upsample_kernel_sizes (List[int]): list of kernel sizes for each transposed convolution.
|
190 |
+
upsample_initial_channel (int): number of channels for the first upsampling layer. This is divided by 2
|
191 |
+
for each consecutive upsampling layer.
|
192 |
+
upsample_factors (List[int]): upsampling factors (stride) for each upsampling layer.
|
193 |
+
inference_padding (int): constant padding applied to the input at inference time. Defaults to 5.
|
194 |
+
"""
|
195 |
+
super().__init__()
|
196 |
+
self.inference_padding = inference_padding
|
197 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
198 |
+
self.num_upsamples = len(upsample_factors)
|
199 |
+
# initial upsampling layers
|
200 |
+
self.conv_pre = weight_norm(Conv1d(in_channels, upsample_initial_channel, 7, 1, padding=3))
|
201 |
+
resblock = ResBlock1 if resblock_type == "1" else ResBlock2
|
202 |
+
# upsampling layers
|
203 |
+
self.ups = nn.ModuleList()
|
204 |
+
for i, (u, k) in enumerate(zip(upsample_factors, upsample_kernel_sizes)):
|
205 |
+
self.ups.append(
|
206 |
+
weight_norm(
|
207 |
+
ConvTranspose1d(
|
208 |
+
upsample_initial_channel // (2**i),
|
209 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
210 |
+
k,
|
211 |
+
u,
|
212 |
+
padding=(k - u) // 2,
|
213 |
+
)
|
214 |
+
)
|
215 |
+
)
|
216 |
+
# MRF blocks
|
217 |
+
self.resblocks = nn.ModuleList()
|
218 |
+
for i in range(len(self.ups)):
|
219 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
220 |
+
for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
221 |
+
self.resblocks.append(resblock(ch, k, d))
|
222 |
+
# post convolution layer
|
223 |
+
self.conv_post = weight_norm(Conv1d(ch, out_channels, 7, 1, padding=3, bias=conv_post_bias))
|
224 |
+
if cond_channels > 0:
|
225 |
+
self.cond_layer = nn.Conv1d(cond_channels, upsample_initial_channel, 1)
|
226 |
+
|
227 |
+
if not conv_pre_weight_norm:
|
228 |
+
remove_weight_norm(self.conv_pre)
|
229 |
+
|
230 |
+
if not conv_post_weight_norm:
|
231 |
+
remove_weight_norm(self.conv_post)
|
232 |
+
|
233 |
+
def forward(self, x, g=None):
|
234 |
+
"""
|
235 |
+
Args:
|
236 |
+
x (Tensor): feature input tensor.
|
237 |
+
g (Tensor): global conditioning input tensor.
|
238 |
+
|
239 |
+
Returns:
|
240 |
+
Tensor: output waveform.
|
241 |
+
|
242 |
+
Shapes:
|
243 |
+
x: [B, C, T]
|
244 |
+
Tensor: [B, 1, T]
|
245 |
+
"""
|
246 |
+
o = self.conv_pre(x)
|
247 |
+
if hasattr(self, "cond_layer"):
|
248 |
+
o = o + self.cond_layer(g)
|
249 |
+
for i in range(self.num_upsamples):
|
250 |
+
o = F.leaky_relu(o, LRELU_SLOPE)
|
251 |
+
o = self.ups[i](o)
|
252 |
+
z_sum = None
|
253 |
+
for j in range(self.num_kernels):
|
254 |
+
if z_sum is None:
|
255 |
+
z_sum = self.resblocks[i * self.num_kernels + j](o)
|
256 |
+
else:
|
257 |
+
z_sum += self.resblocks[i * self.num_kernels + j](o)
|
258 |
+
o = z_sum / self.num_kernels
|
259 |
+
o = F.leaky_relu(o)
|
260 |
+
o = self.conv_post(o)
|
261 |
+
o = torch.tanh(o)
|
262 |
+
return o
|
263 |
+
|
264 |
+
@torch.no_grad()
|
265 |
+
def inference(self, c, g=None):
|
266 |
+
"""
|
267 |
+
Args:
|
268 |
+
x (Tensor): conditioning input tensor.
|
269 |
+
|
270 |
+
Returns:
|
271 |
+
Tensor: output waveform.
|
272 |
+
|
273 |
+
Shapes:
|
274 |
+
x: [B, C, T]
|
275 |
+
Tensor: [B, 1, T]
|
276 |
+
"""
|
277 |
+
# c = c.to(self.conv_pre.weight.device)
|
278 |
+
# c = torch.nn.functional.pad(c, (self.inference_padding, self.inference_padding), "replicate")
|
279 |
+
up_1 = torch.nn.functional.interpolate(
|
280 |
+
c.transpose(1,2),
|
281 |
+
scale_factor=[1024 / 256],
|
282 |
+
mode="linear",
|
283 |
+
)
|
284 |
+
up_2 = torch.nn.functional.interpolate(
|
285 |
+
up_1,
|
286 |
+
scale_factor=[24000 / 22050],
|
287 |
+
mode="linear",
|
288 |
+
)
|
289 |
+
g = g.unsqueeze(0)
|
290 |
+
return self.forward(up_2.to("cuda"), g.transpose(1,2))
|
291 |
+
|
292 |
+
def remove_weight_norm(self):
|
293 |
+
print("Removing weight norm...")
|
294 |
+
for l in self.ups:
|
295 |
+
remove_weight_norm(l)
|
296 |
+
for l in self.resblocks:
|
297 |
+
l.remove_weight_norm()
|
298 |
+
remove_weight_norm(self.conv_pre)
|
299 |
+
remove_weight_norm(self.conv_post)
|
tortoise/models/stream_generator.py
ADDED
@@ -0,0 +1,1057 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from: https://github.com/LowinLi/transformers-stream-generator
|
2 |
+
|
3 |
+
from transformers import (
|
4 |
+
GenerationConfig,
|
5 |
+
GenerationMixin,
|
6 |
+
LogitsProcessorList,
|
7 |
+
StoppingCriteriaList,
|
8 |
+
DisjunctiveConstraint,
|
9 |
+
BeamSearchScorer,
|
10 |
+
PhrasalConstraint,
|
11 |
+
ConstrainedBeamSearchScorer,
|
12 |
+
PreTrainedModel,
|
13 |
+
)
|
14 |
+
import numpy as np
|
15 |
+
import random
|
16 |
+
import warnings
|
17 |
+
import inspect
|
18 |
+
from transformers.generation.utils import GenerateOutput, SampleOutput, logger
|
19 |
+
import torch
|
20 |
+
from typing import Callable, List, Optional, Union
|
21 |
+
from torch import nn
|
22 |
+
import torch.distributed as dist
|
23 |
+
import copy
|
24 |
+
|
25 |
+
|
26 |
+
def setup_seed(seed):
|
27 |
+
if seed == -1:
|
28 |
+
return
|
29 |
+
torch.manual_seed(seed)
|
30 |
+
if torch.cuda.is_available():
|
31 |
+
torch.cuda.manual_seed_all(seed)
|
32 |
+
np.random.seed(seed)
|
33 |
+
random.seed(seed)
|
34 |
+
torch.backends.cudnn.deterministic = True
|
35 |
+
|
36 |
+
|
37 |
+
class StreamGenerationConfig(GenerationConfig):
|
38 |
+
def __init__(self, **kwargs):
|
39 |
+
super().__init__(**kwargs)
|
40 |
+
self.do_stream = kwargs.pop("do_stream", False)
|
41 |
+
|
42 |
+
|
43 |
+
class NewGenerationMixin(GenerationMixin):
|
44 |
+
@torch.no_grad()
|
45 |
+
def generate(
|
46 |
+
self,
|
47 |
+
inputs: Optional[torch.Tensor] = None,
|
48 |
+
generation_config: Optional[StreamGenerationConfig] = None,
|
49 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
50 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
51 |
+
prefix_allowed_tokens_fn: Optional[
|
52 |
+
Callable[[int, torch.Tensor], List[int]]
|
53 |
+
] = None,
|
54 |
+
synced_gpus: Optional[bool] = False,
|
55 |
+
seed=0,
|
56 |
+
**kwargs,
|
57 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
58 |
+
r"""
|
59 |
+
|
60 |
+
Generates sequences of token ids for models with a language modeling head.
|
61 |
+
|
62 |
+
<Tip warning={true}>
|
63 |
+
|
64 |
+
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
|
65 |
+
model's default generation configuration. You can override any `generation_config` by passing the corresponding
|
66 |
+
parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
|
67 |
+
|
68 |
+
For an overview of generation strategies and code examples, check out the [following
|
69 |
+
guide](./generation_strategies).
|
70 |
+
|
71 |
+
</Tip>
|
72 |
+
|
73 |
+
Parameters:
|
74 |
+
inputs (`torch.Tensor` of varying shape depending on the modality, *optional*):
|
75 |
+
The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the
|
76 |
+
method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs`
|
77 |
+
should of in the format of `input_ids`. For encoder-decoder models *inputs* can represent any of
|
78 |
+
`input_ids`, `input_values`, `input_features`, or `pixel_values`.
|
79 |
+
generation_config (`~generation.GenerationConfig`, *optional*):
|
80 |
+
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
|
81 |
+
passed to generate matching the attributes of `generation_config` will override them. If
|
82 |
+
`generation_config` is not provided, the default will be used, which had the following loading
|
83 |
+
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
|
84 |
+
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
|
85 |
+
default values, whose documentation should be checked to parameterize generation.
|
86 |
+
logits_processor (`LogitsProcessorList`, *optional*):
|
87 |
+
Custom logits processors that complement the default logits processors built from arguments and
|
88 |
+
generation config. If a logit processor is passed that is already created with the arguments or a
|
89 |
+
generation config an error is thrown. This feature is intended for advanced users.
|
90 |
+
stopping_criteria (`StoppingCriteriaList`, *optional*):
|
91 |
+
Custom stopping criteria that complement the default stopping criteria built from arguments and a
|
92 |
+
generation config. If a stopping criteria is passed that is already created with the arguments or a
|
93 |
+
generation config an error is thrown. This feature is intended for advanced users.
|
94 |
+
prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*):
|
95 |
+
If provided, this function constraints the beam search to allowed tokens only at each step. If not
|
96 |
+
provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and
|
97 |
+
`input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned
|
98 |
+
on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful
|
99 |
+
for constrained generation conditioned on the prefix, as described in [Autoregressive Entity
|
100 |
+
Retrieval](https://arxiv.org/abs/2010.00904).
|
101 |
+
synced_gpus (`bool`, *optional*, defaults to `False`):
|
102 |
+
Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
|
103 |
+
kwargs:
|
104 |
+
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
|
105 |
+
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
|
106 |
+
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
|
107 |
+
|
108 |
+
Return:
|
109 |
+
[`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
|
110 |
+
or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`.
|
111 |
+
|
112 |
+
If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible
|
113 |
+
[`~utils.ModelOutput`] types are:
|
114 |
+
|
115 |
+
- [`~generation.GreedySearchDecoderOnlyOutput`],
|
116 |
+
- [`~generation.SampleDecoderOnlyOutput`],
|
117 |
+
- [`~generation.BeamSearchDecoderOnlyOutput`],
|
118 |
+
- [`~generation.BeamSampleDecoderOnlyOutput`]
|
119 |
+
|
120 |
+
If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible
|
121 |
+
[`~utils.ModelOutput`] types are:
|
122 |
+
|
123 |
+
- [`~generation.GreedySearchEncoderDecoderOutput`],
|
124 |
+
- [`~generation.SampleEncoderDecoderOutput`],
|
125 |
+
- [`~generation.BeamSearchEncoderDecoderOutput`],
|
126 |
+
- [`~generation.BeamSampleEncoderDecoderOutput`]
|
127 |
+
"""
|
128 |
+
setup_seed(seed)
|
129 |
+
# 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
|
130 |
+
self._validate_model_class()
|
131 |
+
|
132 |
+
# priority: `generation_config` argument > `model.generation_config` (the default generation config)
|
133 |
+
if generation_config is None:
|
134 |
+
# legacy: users may modify the model configuration to control generation -- update the generation config
|
135 |
+
# model attribute accordingly, if it was created from the model config
|
136 |
+
if self.generation_config._from_model_config:
|
137 |
+
new_generation_config = StreamGenerationConfig.from_model_config(
|
138 |
+
self.config
|
139 |
+
)
|
140 |
+
if new_generation_config != self.generation_config:
|
141 |
+
warnings.warn(
|
142 |
+
"You have modified the pretrained model configuration to control generation. This is a"
|
143 |
+
" deprecated strategy to control generation and will be removed soon, in a future version."
|
144 |
+
" Please use a generation configuration file (see"
|
145 |
+
" https://huggingface.co/docs/transformers/main_classes/text_generation)"
|
146 |
+
)
|
147 |
+
self.generation_config = new_generation_config
|
148 |
+
generation_config = self.generation_config
|
149 |
+
|
150 |
+
generation_config = copy.deepcopy(generation_config)
|
151 |
+
model_kwargs = generation_config.update(
|
152 |
+
**kwargs
|
153 |
+
) # All unused kwargs must be model kwargs
|
154 |
+
# self._validate_model_kwargs(model_kwargs.copy())
|
155 |
+
|
156 |
+
# 2. Set generation parameters if not already defined
|
157 |
+
logits_processor = (
|
158 |
+
logits_processor if logits_processor is not None else LogitsProcessorList()
|
159 |
+
)
|
160 |
+
stopping_criteria = (
|
161 |
+
stopping_criteria
|
162 |
+
if stopping_criteria is not None
|
163 |
+
else StoppingCriteriaList()
|
164 |
+
)
|
165 |
+
|
166 |
+
if (
|
167 |
+
generation_config.pad_token_id is None
|
168 |
+
and generation_config.eos_token_id is not None
|
169 |
+
):
|
170 |
+
if model_kwargs.get("attention_mask", None) is None:
|
171 |
+
logger.warning(
|
172 |
+
"The attention mask and the pad token id were not set. As a consequence, you may observe "
|
173 |
+
"unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
|
174 |
+
)
|
175 |
+
eos_token_id = generation_config.eos_token_id
|
176 |
+
if isinstance(eos_token_id, list):
|
177 |
+
eos_token_id = eos_token_id[0]
|
178 |
+
logger.warning(
|
179 |
+
f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation."
|
180 |
+
)
|
181 |
+
generation_config.pad_token_id = eos_token_id
|
182 |
+
|
183 |
+
# 3. Define model inputs
|
184 |
+
# inputs_tensor has to be defined
|
185 |
+
# model_input_name is defined if model-specific keyword input is passed
|
186 |
+
# otherwise model_input_name is None
|
187 |
+
# all model-specific keyword inputs are removed from `model_kwargs`
|
188 |
+
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
|
189 |
+
inputs, generation_config.bos_token_id, model_kwargs
|
190 |
+
)
|
191 |
+
batch_size = inputs_tensor.shape[0]
|
192 |
+
|
193 |
+
# 4. Define other model kwargs
|
194 |
+
model_kwargs["output_attentions"] = generation_config.output_attentions
|
195 |
+
model_kwargs["output_hidden_states"] = generation_config.output_hidden_states
|
196 |
+
model_kwargs["use_cache"] = generation_config.use_cache
|
197 |
+
|
198 |
+
accepts_attention_mask = "attention_mask" in set(
|
199 |
+
inspect.signature(self.forward).parameters.keys()
|
200 |
+
)
|
201 |
+
requires_attention_mask = "encoder_outputs" not in model_kwargs
|
202 |
+
|
203 |
+
if (
|
204 |
+
model_kwargs.get("attention_mask", None) is None
|
205 |
+
and requires_attention_mask
|
206 |
+
and accepts_attention_mask
|
207 |
+
):
|
208 |
+
model_kwargs[
|
209 |
+
"attention_mask"
|
210 |
+
] = self._prepare_attention_mask_for_generation(
|
211 |
+
inputs_tensor,
|
212 |
+
generation_config.pad_token_id,
|
213 |
+
generation_config.eos_token_id,
|
214 |
+
)
|
215 |
+
|
216 |
+
# decoder-only models should use left-padding for generation
|
217 |
+
if not self.config.is_encoder_decoder:
|
218 |
+
if (
|
219 |
+
generation_config.pad_token_id is not None
|
220 |
+
and torch.sum(inputs_tensor[:, -1] == generation_config.pad_token_id)
|
221 |
+
> 0
|
222 |
+
):
|
223 |
+
logger.warning(
|
224 |
+
"A decoder-only architecture is being used, but right-padding was detected! For correct "
|
225 |
+
"generation results, please set `padding_side='left'` when initializing the tokenizer."
|
226 |
+
)
|
227 |
+
|
228 |
+
if self.config.is_encoder_decoder and "encoder_outputs" not in model_kwargs:
|
229 |
+
# if model is encoder decoder encoder_outputs are created
|
230 |
+
# and added to `model_kwargs`
|
231 |
+
model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(
|
232 |
+
inputs_tensor, model_kwargs, model_input_name
|
233 |
+
)
|
234 |
+
|
235 |
+
# 5. Prepare `input_ids` which will be used for auto-regressive generation
|
236 |
+
if self.config.is_encoder_decoder:
|
237 |
+
input_ids = self._prepare_decoder_input_ids_for_generation(
|
238 |
+
batch_size,
|
239 |
+
decoder_start_token_id=generation_config.decoder_start_token_id,
|
240 |
+
bos_token_id=generation_config.bos_token_id,
|
241 |
+
model_kwargs=model_kwargs,
|
242 |
+
device=inputs_tensor.device,
|
243 |
+
)
|
244 |
+
else:
|
245 |
+
# if decoder-only then inputs_tensor has to be `input_ids`
|
246 |
+
input_ids = inputs_tensor
|
247 |
+
|
248 |
+
# 6. Prepare `max_length` depending on other stopping criteria.
|
249 |
+
input_ids_seq_length = input_ids.shape[-1]
|
250 |
+
has_default_max_length = (
|
251 |
+
kwargs.get("max_length") is None
|
252 |
+
and generation_config.max_length is not None
|
253 |
+
)
|
254 |
+
if has_default_max_length and generation_config.max_new_tokens is None:
|
255 |
+
warnings.warn(
|
256 |
+
"Neither `max_length` nor `max_new_tokens` has been set, `max_length` will default to"
|
257 |
+
f" {generation_config.max_length} (`generation_config.max_length`). Controlling `max_length` via the"
|
258 |
+
" config is deprecated and `max_length` will be removed from the config in v5 of Transformers -- we"
|
259 |
+
" recommend using `max_new_tokens` to control the maximum length of the generation.",
|
260 |
+
UserWarning,
|
261 |
+
)
|
262 |
+
elif has_default_max_length and generation_config.max_new_tokens is not None:
|
263 |
+
generation_config.max_length = (
|
264 |
+
generation_config.max_new_tokens + input_ids_seq_length
|
265 |
+
)
|
266 |
+
elif (
|
267 |
+
not has_default_max_length and generation_config.max_new_tokens is not None
|
268 |
+
):
|
269 |
+
raise ValueError(
|
270 |
+
"Both `max_new_tokens` and `max_length` have been set but they serve the same purpose -- setting a"
|
271 |
+
" limit to the generated output length. Remove one of those arguments. Please refer to the"
|
272 |
+
" documentation for more information. "
|
273 |
+
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
|
274 |
+
)
|
275 |
+
|
276 |
+
if (
|
277 |
+
generation_config.min_length is not None
|
278 |
+
and generation_config.min_length > generation_config.max_length
|
279 |
+
):
|
280 |
+
raise ValueError(
|
281 |
+
f"Unfeasible length constraints: the minimum length ({generation_config.min_length}) is larger than"
|
282 |
+
f" the maximum length ({generation_config.max_length})"
|
283 |
+
)
|
284 |
+
if input_ids_seq_length >= generation_config.max_length:
|
285 |
+
input_ids_string = (
|
286 |
+
"decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
|
287 |
+
)
|
288 |
+
logger.warning(
|
289 |
+
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
|
290 |
+
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
|
291 |
+
" increasing `max_new_tokens`."
|
292 |
+
)
|
293 |
+
|
294 |
+
# 7. determine generation mode
|
295 |
+
is_constraint_gen_mode = (
|
296 |
+
generation_config.constraints is not None
|
297 |
+
or generation_config.force_words_ids is not None
|
298 |
+
)
|
299 |
+
|
300 |
+
is_contrastive_search_gen_mode = (
|
301 |
+
generation_config.top_k is not None
|
302 |
+
and generation_config.top_k > 1
|
303 |
+
and generation_config.do_sample is False
|
304 |
+
and generation_config.penalty_alpha is not None
|
305 |
+
and generation_config.penalty_alpha > 0
|
306 |
+
)
|
307 |
+
|
308 |
+
is_greedy_gen_mode = (
|
309 |
+
(generation_config.num_beams == 1)
|
310 |
+
and (generation_config.num_beam_groups == 1)
|
311 |
+
and generation_config.do_sample is False
|
312 |
+
and not is_constraint_gen_mode
|
313 |
+
and not is_contrastive_search_gen_mode
|
314 |
+
)
|
315 |
+
is_sample_gen_mode = (
|
316 |
+
(generation_config.num_beams == 1)
|
317 |
+
and (generation_config.num_beam_groups == 1)
|
318 |
+
and generation_config.do_sample is True
|
319 |
+
and generation_config.do_stream is False
|
320 |
+
and not is_constraint_gen_mode
|
321 |
+
and not is_contrastive_search_gen_mode
|
322 |
+
)
|
323 |
+
is_sample_gen_stream_mode = (
|
324 |
+
(generation_config.num_beams == 1)
|
325 |
+
and (generation_config.num_beam_groups == 1)
|
326 |
+
and generation_config.do_stream is True
|
327 |
+
and not is_constraint_gen_mode
|
328 |
+
and not is_contrastive_search_gen_mode
|
329 |
+
)
|
330 |
+
is_beam_gen_mode = (
|
331 |
+
(generation_config.num_beams > 1)
|
332 |
+
and (generation_config.num_beam_groups == 1)
|
333 |
+
and generation_config.do_sample is False
|
334 |
+
and not is_constraint_gen_mode
|
335 |
+
and not is_contrastive_search_gen_mode
|
336 |
+
)
|
337 |
+
is_beam_sample_gen_mode = (
|
338 |
+
(generation_config.num_beams > 1)
|
339 |
+
and (generation_config.num_beam_groups == 1)
|
340 |
+
and generation_config.do_sample is True
|
341 |
+
and not is_constraint_gen_mode
|
342 |
+
and not is_contrastive_search_gen_mode
|
343 |
+
)
|
344 |
+
is_group_beam_gen_mode = (
|
345 |
+
(generation_config.num_beams > 1)
|
346 |
+
and (generation_config.num_beam_groups > 1)
|
347 |
+
and not is_constraint_gen_mode
|
348 |
+
and not is_contrastive_search_gen_mode
|
349 |
+
)
|
350 |
+
|
351 |
+
if generation_config.num_beam_groups > generation_config.num_beams:
|
352 |
+
raise ValueError(
|
353 |
+
"`num_beam_groups` has to be smaller or equal to `num_beams`"
|
354 |
+
)
|
355 |
+
if is_group_beam_gen_mode and generation_config.do_sample is True:
|
356 |
+
raise ValueError(
|
357 |
+
"Diverse beam search cannot be used in sampling mode. Make sure that `do_sample` is set to `False`."
|
358 |
+
)
|
359 |
+
|
360 |
+
if self.device.type != input_ids.device.type:
|
361 |
+
warnings.warn(
|
362 |
+
"You are calling .generate() with the `input_ids` being on a device type different"
|
363 |
+
f" than your model's device. `input_ids` is on {input_ids.device.type}, whereas the model"
|
364 |
+
f" is on {self.device.type}. You may experience unexpected behaviors or slower generation."
|
365 |
+
" Please make sure that you have put `input_ids` to the"
|
366 |
+
f" correct device by calling for example input_ids = input_ids.to('{self.device.type}') before"
|
367 |
+
" running `.generate()`.",
|
368 |
+
UserWarning,
|
369 |
+
)
|
370 |
+
# 8. prepare distribution pre_processing samplers
|
371 |
+
logits_processor = self._get_logits_processor(
|
372 |
+
generation_config=generation_config,
|
373 |
+
input_ids_seq_length=input_ids_seq_length,
|
374 |
+
encoder_input_ids=inputs_tensor,
|
375 |
+
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
376 |
+
logits_processor=logits_processor,
|
377 |
+
)
|
378 |
+
|
379 |
+
# 9. prepare stopping criteria
|
380 |
+
stopping_criteria = self._get_stopping_criteria(
|
381 |
+
generation_config=generation_config, stopping_criteria=stopping_criteria
|
382 |
+
)
|
383 |
+
# 10. go into different generation modes
|
384 |
+
if is_greedy_gen_mode:
|
385 |
+
if generation_config.num_return_sequences > 1:
|
386 |
+
raise ValueError(
|
387 |
+
f"num_return_sequences has to be 1, but is {generation_config.num_return_sequences} when doing"
|
388 |
+
" greedy search."
|
389 |
+
)
|
390 |
+
|
391 |
+
# 11. run greedy search
|
392 |
+
return self.greedy_search(
|
393 |
+
input_ids,
|
394 |
+
logits_processor=logits_processor,
|
395 |
+
stopping_criteria=stopping_criteria,
|
396 |
+
pad_token_id=generation_config.pad_token_id,
|
397 |
+
eos_token_id=generation_config.eos_token_id,
|
398 |
+
output_scores=generation_config.output_scores,
|
399 |
+
return_dict_in_generate=generation_config.return_dict_in_generate,
|
400 |
+
synced_gpus=synced_gpus,
|
401 |
+
**model_kwargs,
|
402 |
+
)
|
403 |
+
|
404 |
+
elif is_contrastive_search_gen_mode:
|
405 |
+
if generation_config.num_return_sequences > 1:
|
406 |
+
raise ValueError(
|
407 |
+
f"num_return_sequences has to be 1, but is {generation_config.num_return_sequences} when doing"
|
408 |
+
" contrastive search."
|
409 |
+
)
|
410 |
+
|
411 |
+
return self.contrastive_search(
|
412 |
+
input_ids,
|
413 |
+
top_k=generation_config.top_k,
|
414 |
+
penalty_alpha=generation_config.penalty_alpha,
|
415 |
+
logits_processor=logits_processor,
|
416 |
+
stopping_criteria=stopping_criteria,
|
417 |
+
pad_token_id=generation_config.pad_token_id,
|
418 |
+
eos_token_id=generation_config.eos_token_id,
|
419 |
+
output_scores=generation_config.output_scores,
|
420 |
+
return_dict_in_generate=generation_config.return_dict_in_generate,
|
421 |
+
synced_gpus=synced_gpus,
|
422 |
+
**model_kwargs,
|
423 |
+
)
|
424 |
+
|
425 |
+
elif is_sample_gen_mode:
|
426 |
+
# 11. prepare logits warper
|
427 |
+
logits_warper = self._get_logits_warper(generation_config)
|
428 |
+
|
429 |
+
# 12. expand input_ids with `num_return_sequences` additional sequences per batch
|
430 |
+
input_ids, model_kwargs = self._expand_inputs_for_generation(
|
431 |
+
input_ids=input_ids,
|
432 |
+
expand_size=generation_config.num_return_sequences,
|
433 |
+
is_encoder_decoder=self.config.is_encoder_decoder,
|
434 |
+
**model_kwargs,
|
435 |
+
)
|
436 |
+
|
437 |
+
# 13. run sample
|
438 |
+
return self.sample(
|
439 |
+
input_ids,
|
440 |
+
logits_processor=logits_processor,
|
441 |
+
logits_warper=logits_warper,
|
442 |
+
stopping_criteria=stopping_criteria,
|
443 |
+
pad_token_id=generation_config.pad_token_id,
|
444 |
+
eos_token_id=generation_config.eos_token_id,
|
445 |
+
output_scores=generation_config.output_scores,
|
446 |
+
return_dict_in_generate=generation_config.return_dict_in_generate,
|
447 |
+
synced_gpus=synced_gpus,
|
448 |
+
**model_kwargs,
|
449 |
+
)
|
450 |
+
elif is_sample_gen_stream_mode:
|
451 |
+
# 11. prepare logits warper
|
452 |
+
logits_warper = self._get_logits_warper(generation_config)
|
453 |
+
|
454 |
+
# 12. expand input_ids with `num_return_sequences` additional sequences per batch
|
455 |
+
input_ids, model_kwargs = self._expand_inputs_for_generation(
|
456 |
+
input_ids=input_ids,
|
457 |
+
expand_size=generation_config.num_return_sequences,
|
458 |
+
is_encoder_decoder=self.config.is_encoder_decoder,
|
459 |
+
**model_kwargs,
|
460 |
+
)
|
461 |
+
|
462 |
+
# 13. run sample
|
463 |
+
return self.sample_stream(
|
464 |
+
input_ids,
|
465 |
+
logits_processor=logits_processor,
|
466 |
+
logits_warper=logits_warper,
|
467 |
+
stopping_criteria=stopping_criteria,
|
468 |
+
pad_token_id=generation_config.pad_token_id,
|
469 |
+
eos_token_id=generation_config.eos_token_id,
|
470 |
+
output_scores=generation_config.output_scores,
|
471 |
+
return_dict_in_generate=generation_config.return_dict_in_generate,
|
472 |
+
synced_gpus=synced_gpus,
|
473 |
+
**model_kwargs,
|
474 |
+
)
|
475 |
+
elif is_beam_gen_mode:
|
476 |
+
if generation_config.num_return_sequences > generation_config.num_beams:
|
477 |
+
raise ValueError(
|
478 |
+
"`num_return_sequences` has to be smaller or equal to `num_beams`."
|
479 |
+
)
|
480 |
+
|
481 |
+
if stopping_criteria.max_length is None:
|
482 |
+
raise ValueError(
|
483 |
+
"`max_length` needs to be a stopping_criteria for now."
|
484 |
+
)
|
485 |
+
|
486 |
+
# 11. prepare beam search scorer
|
487 |
+
beam_scorer = BeamSearchScorer(
|
488 |
+
batch_size=batch_size,
|
489 |
+
num_beams=generation_config.num_beams,
|
490 |
+
device=inputs_tensor.device,
|
491 |
+
length_penalty=generation_config.length_penalty,
|
492 |
+
do_early_stopping=generation_config.early_stopping,
|
493 |
+
num_beam_hyps_to_keep=generation_config.num_return_sequences,
|
494 |
+
)
|
495 |
+
# 12. interleave input_ids with `num_beams` additional sequences per batch
|
496 |
+
input_ids, model_kwargs = self._expand_inputs_for_generation(
|
497 |
+
input_ids=input_ids,
|
498 |
+
expand_size=generation_config.num_beams,
|
499 |
+
is_encoder_decoder=self.config.is_encoder_decoder,
|
500 |
+
**model_kwargs,
|
501 |
+
)
|
502 |
+
# 13. run beam search
|
503 |
+
return self.beam_search(
|
504 |
+
input_ids,
|
505 |
+
beam_scorer,
|
506 |
+
logits_processor=logits_processor,
|
507 |
+
stopping_criteria=stopping_criteria,
|
508 |
+
pad_token_id=generation_config.pad_token_id,
|
509 |
+
eos_token_id=generation_config.eos_token_id,
|
510 |
+
output_scores=generation_config.output_scores,
|
511 |
+
return_dict_in_generate=generation_config.return_dict_in_generate,
|
512 |
+
synced_gpus=synced_gpus,
|
513 |
+
**model_kwargs,
|
514 |
+
)
|
515 |
+
|
516 |
+
elif is_beam_sample_gen_mode:
|
517 |
+
# 11. prepare logits warper
|
518 |
+
logits_warper = self._get_logits_warper(generation_config)
|
519 |
+
|
520 |
+
if stopping_criteria.max_length is None:
|
521 |
+
raise ValueError(
|
522 |
+
"`max_length` needs to be a stopping_criteria for now."
|
523 |
+
)
|
524 |
+
# 12. prepare beam search scorer
|
525 |
+
beam_scorer = BeamSearchScorer(
|
526 |
+
batch_size=batch_size * generation_config.num_return_sequences,
|
527 |
+
num_beams=generation_config.num_beams,
|
528 |
+
device=inputs_tensor.device,
|
529 |
+
length_penalty=generation_config.length_penalty,
|
530 |
+
do_early_stopping=generation_config.early_stopping,
|
531 |
+
)
|
532 |
+
|
533 |
+
# 13. interleave input_ids with `num_beams` additional sequences per batch
|
534 |
+
input_ids, model_kwargs = self._expand_inputs_for_generation(
|
535 |
+
input_ids=input_ids,
|
536 |
+
expand_size=generation_config.num_beams
|
537 |
+
* generation_config.num_return_sequences,
|
538 |
+
is_encoder_decoder=self.config.is_encoder_decoder,
|
539 |
+
**model_kwargs,
|
540 |
+
)
|
541 |
+
|
542 |
+
# 14. run beam sample
|
543 |
+
return self.beam_sample(
|
544 |
+
input_ids,
|
545 |
+
beam_scorer,
|
546 |
+
logits_processor=logits_processor,
|
547 |
+
logits_warper=logits_warper,
|
548 |
+
stopping_criteria=stopping_criteria,
|
549 |
+
pad_token_id=generation_config.pad_token_id,
|
550 |
+
eos_token_id=generation_config.eos_token_id,
|
551 |
+
output_scores=generation_config.output_scores,
|
552 |
+
return_dict_in_generate=generation_config.return_dict_in_generate,
|
553 |
+
synced_gpus=synced_gpus,
|
554 |
+
**model_kwargs,
|
555 |
+
)
|
556 |
+
|
557 |
+
elif is_group_beam_gen_mode:
|
558 |
+
if generation_config.num_return_sequences > generation_config.num_beams:
|
559 |
+
raise ValueError(
|
560 |
+
"`num_return_sequences` has to be smaller or equal to `num_beams`."
|
561 |
+
)
|
562 |
+
|
563 |
+
if generation_config.num_beams % generation_config.num_beam_groups != 0:
|
564 |
+
raise ValueError(
|
565 |
+
"`num_beams` should be divisible by `num_beam_groups` for group beam search."
|
566 |
+
)
|
567 |
+
|
568 |
+
if stopping_criteria.max_length is None:
|
569 |
+
raise ValueError(
|
570 |
+
"`max_length` needs to be a stopping_criteria for now."
|
571 |
+
)
|
572 |
+
|
573 |
+
has_default_typical_p = (
|
574 |
+
kwargs.get("typical_p") is None and generation_config.typical_p == 1.0
|
575 |
+
)
|
576 |
+
if not has_default_typical_p:
|
577 |
+
raise ValueError(
|
578 |
+
"Decoder argument `typical_p` is not supported with beam groups."
|
579 |
+
)
|
580 |
+
|
581 |
+
# 11. prepare beam search scorer
|
582 |
+
beam_scorer = BeamSearchScorer(
|
583 |
+
batch_size=batch_size,
|
584 |
+
num_beams=generation_config.num_beams,
|
585 |
+
max_length=stopping_criteria.max_length,
|
586 |
+
device=inputs_tensor.device,
|
587 |
+
length_penalty=generation_config.length_penalty,
|
588 |
+
do_early_stopping=generation_config.early_stopping,
|
589 |
+
num_beam_hyps_to_keep=generation_config.num_return_sequences,
|
590 |
+
num_beam_groups=generation_config.num_beam_groups,
|
591 |
+
)
|
592 |
+
# 12. interleave input_ids with `num_beams` additional sequences per batch
|
593 |
+
input_ids, model_kwargs = self._expand_inputs_for_generation(
|
594 |
+
input_ids=input_ids,
|
595 |
+
expand_size=generation_config.num_beams,
|
596 |
+
is_encoder_decoder=self.config.is_encoder_decoder,
|
597 |
+
**model_kwargs,
|
598 |
+
)
|
599 |
+
# 13. run beam search
|
600 |
+
return self.group_beam_search(
|
601 |
+
input_ids,
|
602 |
+
beam_scorer,
|
603 |
+
logits_processor=logits_processor,
|
604 |
+
stopping_criteria=stopping_criteria,
|
605 |
+
pad_token_id=generation_config.pad_token_id,
|
606 |
+
eos_token_id=generation_config.eos_token_id,
|
607 |
+
output_scores=generation_config.output_scores,
|
608 |
+
return_dict_in_generate=generation_config.return_dict_in_generate,
|
609 |
+
synced_gpus=synced_gpus,
|
610 |
+
**model_kwargs,
|
611 |
+
)
|
612 |
+
|
613 |
+
elif is_constraint_gen_mode:
|
614 |
+
if generation_config.num_return_sequences > generation_config.num_beams:
|
615 |
+
raise ValueError(
|
616 |
+
"`num_return_sequences` has to be smaller or equal to `num_beams`."
|
617 |
+
)
|
618 |
+
|
619 |
+
if stopping_criteria.max_length is None:
|
620 |
+
raise ValueError(
|
621 |
+
"`max_length` needs to be a stopping_criteria for now."
|
622 |
+
)
|
623 |
+
|
624 |
+
if generation_config.num_beams <= 1:
|
625 |
+
raise ValueError(
|
626 |
+
"`num_beams` needs to be greater than 1 for constrained generation."
|
627 |
+
)
|
628 |
+
|
629 |
+
if generation_config.do_sample:
|
630 |
+
raise ValueError(
|
631 |
+
"`do_sample` needs to be false for constrained generation."
|
632 |
+
)
|
633 |
+
|
634 |
+
if (
|
635 |
+
generation_config.num_beam_groups is not None
|
636 |
+
and generation_config.num_beam_groups > 1
|
637 |
+
):
|
638 |
+
raise ValueError(
|
639 |
+
"`num_beam_groups` not supported yet for constrained generation."
|
640 |
+
)
|
641 |
+
|
642 |
+
final_constraints = []
|
643 |
+
if generation_config.constraints is not None:
|
644 |
+
final_constraints = generation_config.constraints
|
645 |
+
|
646 |
+
if generation_config.force_words_ids is not None:
|
647 |
+
|
648 |
+
def typeerror():
|
649 |
+
raise ValueError(
|
650 |
+
"`force_words_ids` has to either be a `List[List[List[int]]]` or `List[List[int]]`"
|
651 |
+
f"of positive integers, but is {generation_config.force_words_ids}."
|
652 |
+
)
|
653 |
+
|
654 |
+
if (
|
655 |
+
not isinstance(generation_config.force_words_ids, list)
|
656 |
+
or len(generation_config.force_words_ids) == 0
|
657 |
+
):
|
658 |
+
typeerror()
|
659 |
+
|
660 |
+
for word_ids in generation_config.force_words_ids:
|
661 |
+
if isinstance(word_ids[0], list):
|
662 |
+
if not isinstance(word_ids, list) or len(word_ids) == 0:
|
663 |
+
typeerror()
|
664 |
+
if any(
|
665 |
+
not isinstance(token_ids, list) for token_ids in word_ids
|
666 |
+
):
|
667 |
+
typeerror()
|
668 |
+
if any(
|
669 |
+
any(
|
670 |
+
(not isinstance(token_id, int) or token_id < 0)
|
671 |
+
for token_id in token_ids
|
672 |
+
)
|
673 |
+
for token_ids in word_ids
|
674 |
+
):
|
675 |
+
typeerror()
|
676 |
+
|
677 |
+
constraint = DisjunctiveConstraint(word_ids)
|
678 |
+
else:
|
679 |
+
if not isinstance(word_ids, list) or len(word_ids) == 0:
|
680 |
+
typeerror()
|
681 |
+
if any(
|
682 |
+
(not isinstance(token_id, int) or token_id < 0)
|
683 |
+
for token_id in word_ids
|
684 |
+
):
|
685 |
+
typeerror()
|
686 |
+
|
687 |
+
constraint = PhrasalConstraint(word_ids)
|
688 |
+
final_constraints.append(constraint)
|
689 |
+
|
690 |
+
# 11. prepare beam search scorer
|
691 |
+
constrained_beam_scorer = ConstrainedBeamSearchScorer(
|
692 |
+
constraints=final_constraints,
|
693 |
+
batch_size=batch_size,
|
694 |
+
num_beams=generation_config.num_beams,
|
695 |
+
device=inputs_tensor.device,
|
696 |
+
length_penalty=generation_config.length_penalty,
|
697 |
+
do_early_stopping=generation_config.early_stopping,
|
698 |
+
num_beam_hyps_to_keep=generation_config.num_return_sequences,
|
699 |
+
)
|
700 |
+
# 12. interleave input_ids with `num_beams` additional sequences per batch
|
701 |
+
input_ids, model_kwargs = self._expand_inputs_for_generation(
|
702 |
+
input_ids=input_ids,
|
703 |
+
expand_size=generation_config.num_beams,
|
704 |
+
is_encoder_decoder=self.config.is_encoder_decoder,
|
705 |
+
**model_kwargs,
|
706 |
+
)
|
707 |
+
# 13. run beam search
|
708 |
+
return self.constrained_beam_search(
|
709 |
+
input_ids,
|
710 |
+
constrained_beam_scorer=constrained_beam_scorer,
|
711 |
+
logits_processor=logits_processor,
|
712 |
+
stopping_criteria=stopping_criteria,
|
713 |
+
pad_token_id=generation_config.pad_token_id,
|
714 |
+
eos_token_id=generation_config.eos_token_id,
|
715 |
+
output_scores=generation_config.output_scores,
|
716 |
+
return_dict_in_generate=generation_config.return_dict_in_generate,
|
717 |
+
synced_gpus=synced_gpus,
|
718 |
+
**model_kwargs,
|
719 |
+
)
|
720 |
+
|
721 |
+
@torch.no_grad()
|
722 |
+
def sample_stream(
|
723 |
+
self,
|
724 |
+
input_ids: torch.LongTensor,
|
725 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
726 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
727 |
+
logits_warper: Optional[LogitsProcessorList] = None,
|
728 |
+
max_length: Optional[int] = None,
|
729 |
+
pad_token_id: Optional[int] = None,
|
730 |
+
eos_token_id: Optional[Union[int, List[int]]] = None,
|
731 |
+
output_attentions: Optional[bool] = None,
|
732 |
+
output_hidden_states: Optional[bool] = None,
|
733 |
+
output_scores: Optional[bool] = None,
|
734 |
+
return_dict_in_generate: Optional[bool] = None,
|
735 |
+
synced_gpus: Optional[bool] = False,
|
736 |
+
**model_kwargs,
|
737 |
+
) -> Union[SampleOutput, torch.LongTensor]:
|
738 |
+
r"""
|
739 |
+
Generates sequences of token ids for models with a language modeling head using **multinomial sampling** and
|
740 |
+
can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
|
741 |
+
|
742 |
+
<Tip warning={true}>
|
743 |
+
|
744 |
+
In most cases, you do not need to call [`~generation.GenerationMixin.sample`] directly. Use generate() instead.
|
745 |
+
For an overview of generation strategies and code examples, check the [following
|
746 |
+
guide](./generation_strategies).
|
747 |
+
|
748 |
+
</Tip>
|
749 |
+
|
750 |
+
Parameters:
|
751 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
752 |
+
The sequence used as a prompt for the generation.
|
753 |
+
logits_processor (`LogitsProcessorList`, *optional*):
|
754 |
+
An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
|
755 |
+
used to modify the prediction scores of the language modeling head applied at each generation step.
|
756 |
+
stopping_criteria (`StoppingCriteriaList`, *optional*):
|
757 |
+
An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
|
758 |
+
used to tell if the generation loop should stop.
|
759 |
+
logits_warper (`LogitsProcessorList`, *optional*):
|
760 |
+
An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
|
761 |
+
to warp the prediction score distribution of the language modeling head applied before multinomial
|
762 |
+
sampling at each generation step.
|
763 |
+
max_length (`int`, *optional*, defaults to 20):
|
764 |
+
**DEPRECATED**. Use `logits_processor` or `stopping_criteria` directly to cap the number of generated
|
765 |
+
tokens. The maximum length of the sequence to be generated.
|
766 |
+
pad_token_id (`int`, *optional*):
|
767 |
+
The id of the *padding* token.
|
768 |
+
eos_token_id (`int`, *optional*):
|
769 |
+
The id of the *end-of-sequence* token.
|
770 |
+
output_attentions (`bool`, *optional*, defaults to `False`):
|
771 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
772 |
+
returned tensors for more details.
|
773 |
+
output_hidden_states (`bool`, *optional*, defaults to `False`):
|
774 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
775 |
+
for more details.
|
776 |
+
output_scores (`bool`, *optional*, defaults to `False`):
|
777 |
+
Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
|
778 |
+
return_dict_in_generate (`bool`, *optional*, defaults to `False`):
|
779 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
780 |
+
synced_gpus (`bool`, *optional*, defaults to `False`):
|
781 |
+
Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
|
782 |
+
model_kwargs:
|
783 |
+
Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
|
784 |
+
an encoder-decoder model the kwargs should include `encoder_outputs`.
|
785 |
+
|
786 |
+
Return:
|
787 |
+
[`~generation.SampleDecoderOnlyOutput`], [`~generation.SampleEncoderDecoderOutput`] or `torch.LongTensor`:
|
788 |
+
A `torch.LongTensor` containing the generated tokens (default behaviour) or a
|
789 |
+
[`~generation.SampleDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
|
790 |
+
`return_dict_in_generate=True` or a [`~generation.SampleEncoderDecoderOutput`] if
|
791 |
+
`model.config.is_encoder_decoder=True`.
|
792 |
+
|
793 |
+
Examples:
|
794 |
+
|
795 |
+
```python
|
796 |
+
>>> from transformers import (
|
797 |
+
... AutoTokenizer,
|
798 |
+
... AutoModelForCausalLM,
|
799 |
+
... LogitsProcessorList,
|
800 |
+
... MinLengthLogitsProcessor,
|
801 |
+
... TopKLogitsWarper,
|
802 |
+
... TemperatureLogitsWarper,
|
803 |
+
... StoppingCriteriaList,
|
804 |
+
... MaxLengthCriteria,
|
805 |
+
... )
|
806 |
+
>>> import torch
|
807 |
+
|
808 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
809 |
+
>>> model = AutoModelForCausalLM.from_pretrained("gpt2")
|
810 |
+
|
811 |
+
>>> # set pad_token_id to eos_token_id because GPT2 does not have a EOS token
|
812 |
+
>>> model.config.pad_token_id = model.config.eos_token_id
|
813 |
+
>>> model.generation_config.pad_token_id = model.config.eos_token_id
|
814 |
+
|
815 |
+
>>> input_prompt = "Today is a beautiful day, and"
|
816 |
+
>>> input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids
|
817 |
+
|
818 |
+
>>> # instantiate logits processors
|
819 |
+
>>> logits_processor = LogitsProcessorList(
|
820 |
+
... [
|
821 |
+
... MinLengthLogitsProcessor(15, eos_token_id=model.generation_config.eos_token_id),
|
822 |
+
... ]
|
823 |
+
... )
|
824 |
+
>>> # instantiate logits processors
|
825 |
+
>>> logits_warper = LogitsProcessorList(
|
826 |
+
... [
|
827 |
+
... TopKLogitsWarper(50),
|
828 |
+
... TemperatureLogitsWarper(0.7),
|
829 |
+
... ]
|
830 |
+
... )
|
831 |
+
|
832 |
+
>>> stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=20)])
|
833 |
+
|
834 |
+
>>> torch.manual_seed(0) # doctest: +IGNORE_RESULT
|
835 |
+
>>> outputs = model.sample(
|
836 |
+
... input_ids,
|
837 |
+
... logits_processor=logits_processor,
|
838 |
+
... logits_warper=logits_warper,
|
839 |
+
... stopping_criteria=stopping_criteria,
|
840 |
+
... )
|
841 |
+
|
842 |
+
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
843 |
+
['Today is a beautiful day, and a wonderful day.\n\nI was lucky enough to meet the']
|
844 |
+
```"""
|
845 |
+
# init values
|
846 |
+
logits_processor = (
|
847 |
+
logits_processor if logits_processor is not None else LogitsProcessorList()
|
848 |
+
)
|
849 |
+
stopping_criteria = (
|
850 |
+
stopping_criteria
|
851 |
+
if stopping_criteria is not None
|
852 |
+
else StoppingCriteriaList()
|
853 |
+
)
|
854 |
+
if max_length is not None:
|
855 |
+
warnings.warn(
|
856 |
+
"`max_length` is deprecated in this function, use"
|
857 |
+
" `stopping_criteria=StoppingCriteriaList(MaxLengthCriteria(max_length=max_length))` instead.",
|
858 |
+
UserWarning,
|
859 |
+
)
|
860 |
+
stopping_criteria = validate_stopping_criteria(
|
861 |
+
stopping_criteria, max_length
|
862 |
+
)
|
863 |
+
logits_warper = (
|
864 |
+
logits_warper if logits_warper is not None else LogitsProcessorList()
|
865 |
+
)
|
866 |
+
pad_token_id = (
|
867 |
+
pad_token_id
|
868 |
+
if pad_token_id is not None
|
869 |
+
else self.generation_config.pad_token_id
|
870 |
+
)
|
871 |
+
eos_token_id = (
|
872 |
+
eos_token_id
|
873 |
+
if eos_token_id is not None
|
874 |
+
else self.generation_config.eos_token_id
|
875 |
+
)
|
876 |
+
if isinstance(eos_token_id, int):
|
877 |
+
eos_token_id = [eos_token_id]
|
878 |
+
output_scores = (
|
879 |
+
output_scores
|
880 |
+
if output_scores is not None
|
881 |
+
else self.generation_config.output_scores
|
882 |
+
)
|
883 |
+
output_attentions = (
|
884 |
+
output_attentions
|
885 |
+
if output_attentions is not None
|
886 |
+
else self.generation_config.output_attentions
|
887 |
+
)
|
888 |
+
output_hidden_states = (
|
889 |
+
output_hidden_states
|
890 |
+
if output_hidden_states is not None
|
891 |
+
else self.generation_config.output_hidden_states
|
892 |
+
)
|
893 |
+
return_dict_in_generate = (
|
894 |
+
return_dict_in_generate
|
895 |
+
if return_dict_in_generate is not None
|
896 |
+
else self.generation_config.return_dict_in_generate
|
897 |
+
)
|
898 |
+
|
899 |
+
# init attention / hidden states / scores tuples
|
900 |
+
scores = () if (return_dict_in_generate and output_scores) else None
|
901 |
+
decoder_attentions = (
|
902 |
+
() if (return_dict_in_generate and output_attentions) else None
|
903 |
+
)
|
904 |
+
cross_attentions = (
|
905 |
+
() if (return_dict_in_generate and output_attentions) else None
|
906 |
+
)
|
907 |
+
decoder_hidden_states = (
|
908 |
+
() if (return_dict_in_generate and output_hidden_states) else None
|
909 |
+
)
|
910 |
+
|
911 |
+
# keep track of which sequences are already finished
|
912 |
+
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
|
913 |
+
|
914 |
+
this_peer_finished = False # used by synced_gpus only
|
915 |
+
# auto-regressive generation
|
916 |
+
while True:
|
917 |
+
if synced_gpus:
|
918 |
+
# Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
|
919 |
+
# The following logic allows an early break if all peers finished generating their sequence
|
920 |
+
this_peer_finished_flag = torch.tensor(
|
921 |
+
0.0 if this_peer_finished else 1.0
|
922 |
+
).to(input_ids.device)
|
923 |
+
# send 0.0 if we finished, 1.0 otherwise
|
924 |
+
dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
|
925 |
+
# did all peers finish? the reduced sum will be 0.0 then
|
926 |
+
if this_peer_finished_flag.item() == 0.0:
|
927 |
+
break
|
928 |
+
|
929 |
+
# prepare model inputs
|
930 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
931 |
+
|
932 |
+
# forward pass to get next token
|
933 |
+
outputs = self(
|
934 |
+
**model_inputs,
|
935 |
+
return_dict=True,
|
936 |
+
output_attentions=output_attentions,
|
937 |
+
output_hidden_states=output_hidden_states,
|
938 |
+
)
|
939 |
+
|
940 |
+
if synced_gpus and this_peer_finished:
|
941 |
+
continue # don't waste resources running the code we don't need
|
942 |
+
|
943 |
+
next_token_logits = outputs.logits[:, -1, :]
|
944 |
+
|
945 |
+
# pre-process distribution
|
946 |
+
next_token_scores = logits_processor(input_ids, next_token_logits)
|
947 |
+
next_token_scores = logits_warper(input_ids, next_token_scores)
|
948 |
+
|
949 |
+
# Store scores, attentions and hidden_states when required
|
950 |
+
if return_dict_in_generate:
|
951 |
+
if output_scores:
|
952 |
+
scores += (next_token_scores,)
|
953 |
+
if output_attentions:
|
954 |
+
decoder_attentions += (
|
955 |
+
(outputs.decoder_attentions,)
|
956 |
+
if self.config.is_encoder_decoder
|
957 |
+
else (outputs.attentions,)
|
958 |
+
)
|
959 |
+
if self.config.is_encoder_decoder:
|
960 |
+
cross_attentions += (outputs.cross_attentions,)
|
961 |
+
|
962 |
+
if output_hidden_states:
|
963 |
+
decoder_hidden_states += (
|
964 |
+
(outputs.decoder_hidden_states,)
|
965 |
+
if self.config.is_encoder_decoder
|
966 |
+
else (outputs.hidden_states,)
|
967 |
+
)
|
968 |
+
|
969 |
+
# sample
|
970 |
+
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
971 |
+
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
972 |
+
|
973 |
+
# finished sentences should have their next token be a padding token
|
974 |
+
if eos_token_id is not None:
|
975 |
+
if pad_token_id is None:
|
976 |
+
raise ValueError(
|
977 |
+
"If `eos_token_id` is defined, make sure that `pad_token_id` is defined."
|
978 |
+
)
|
979 |
+
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (
|
980 |
+
1 - unfinished_sequences
|
981 |
+
)
|
982 |
+
yield next_tokens, self.final_norm(outputs.hidden_states[-1][:, -1])
|
983 |
+
# update generated ids, model inputs, and length for next step
|
984 |
+
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
985 |
+
model_kwargs = self._update_model_kwargs_for_generation(
|
986 |
+
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
|
987 |
+
)
|
988 |
+
|
989 |
+
# if eos_token was found in one sentence, set sentence to finished
|
990 |
+
if eos_token_id is not None:
|
991 |
+
unfinished_sequences = unfinished_sequences.mul(
|
992 |
+
(sum(next_tokens != i for i in eos_token_id)).long()
|
993 |
+
)
|
994 |
+
|
995 |
+
# stop when each sentence is finished, or if we exceed the maximum length
|
996 |
+
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
|
997 |
+
if not synced_gpus:
|
998 |
+
break
|
999 |
+
else:
|
1000 |
+
this_peer_finished = True
|
1001 |
+
|
1002 |
+
|
1003 |
+
def init_stream_support():
|
1004 |
+
"""Overload PreTrainedModel for streaming."""
|
1005 |
+
PreTrainedModel.generate_stream = NewGenerationMixin.generate
|
1006 |
+
PreTrainedModel.sample_stream = NewGenerationMixin.sample_stream
|
1007 |
+
|
1008 |
+
|
1009 |
+
if __name__ == "__main__":
|
1010 |
+
from transformers import PreTrainedModel
|
1011 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
1012 |
+
|
1013 |
+
PreTrainedModel.generate = NewGenerationMixin.generate
|
1014 |
+
PreTrainedModel.sample_stream = NewGenerationMixin.sample_stream
|
1015 |
+
model = AutoModelForCausalLM.from_pretrained(
|
1016 |
+
"bigscience/bloom-560m", torch_dtype=torch.float16
|
1017 |
+
)
|
1018 |
+
|
1019 |
+
tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")
|
1020 |
+
model = model.to("cuda:0")
|
1021 |
+
model = model.eval()
|
1022 |
+
prompt_text = "hello? \n"
|
1023 |
+
input_ids = tokenizer(
|
1024 |
+
prompt_text, return_tensors="pt", add_special_tokens=False
|
1025 |
+
).input_ids
|
1026 |
+
input_ids = input_ids.to("cuda:0")
|
1027 |
+
|
1028 |
+
with torch.no_grad():
|
1029 |
+
result = model.generate(
|
1030 |
+
input_ids,
|
1031 |
+
max_new_tokens=200,
|
1032 |
+
do_sample=True,
|
1033 |
+
top_k=30,
|
1034 |
+
top_p=0.85,
|
1035 |
+
temperature=0.35,
|
1036 |
+
repetition_penalty=1.2,
|
1037 |
+
early_stopping=True,
|
1038 |
+
seed=0,
|
1039 |
+
)
|
1040 |
+
print(tokenizer.decode(result, skip_special_tokens=True))
|
1041 |
+
generator = model.generate(
|
1042 |
+
input_ids,
|
1043 |
+
max_new_tokens=200,
|
1044 |
+
do_sample=True,
|
1045 |
+
top_k=30,
|
1046 |
+
top_p=0.85,
|
1047 |
+
temperature=0.35,
|
1048 |
+
repetition_penalty=1.2,
|
1049 |
+
early_stopping=True,
|
1050 |
+
seed=0,
|
1051 |
+
do_stream=True,
|
1052 |
+
)
|
1053 |
+
stream_result = ""
|
1054 |
+
for x in generator:
|
1055 |
+
chunk = tokenizer.decode(x, skip_special_tokens=True)
|
1056 |
+
stream_result += chunk
|
1057 |
+
print(stream_result)
|