Spaces:
Runtime error
Runtime error
File size: 8,513 Bytes
8fbc209 a7a2242 f16e094 8fbc209 bfc56dc 335eee6 8fbc209 86744eb 335eee6 8fbc209 f16e094 8fbc209 f16e094 335eee6 f16e094 8fbc209 f16e094 335eee6 f16e094 335eee6 f16e094 335eee6 f16e094 335eee6 f16e094 b51e863 f16e094 bfc56dc b51e863 f16e094 8fbc209 f16e094 9ac6d2f f16e094 b51e863 f16e094 062730b d74a248 a7a2242 75c15ae d74a248 b3a27e6 dd24d8c cdc6293 dd24d8c f16e094 bfc56dc b51e863 bfc56dc b51e863 bfc56dc f16e094 bfc56dc f16e094 bfc56dc f16e094 062730b a7a2242 7c236a6 a7a2242 3f25e3e a7a2242 062730b 3f7f343 f16e094 8fbc209 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import gradio as gr
import spaces
import os
import time
from PIL import Image
import functools
from models.mllava import MLlavaProcessor, LlavaForConditionalGeneration, chat_mllava_stream, MLlavaForConditionalGeneration
from models.conversation import conv_templates
from typing import List
processor = MLlavaProcessor.from_pretrained("TIGER-Lab/Mantis-8B-siglip-llama3")
model = LlavaForConditionalGeneration.from_pretrained("TIGER-Lab/Mantis-8B-siglip-llama3")
conv_template = conv_templates['llama_3']
@spaces.GPU
def generate(text:str, images:List[Image.Image], history: List[dict], **kwargs):
global processor, model
model = model.to("cuda")
if not images:
images = None
for text, history in chat_mllava_stream(text, images, model, processor, history=history, **kwargs):
yield text
return text
def enable_next_image(uploaded_images, image):
uploaded_images.append(image)
return uploaded_images, gr.MultimodalTextbox(value=None, interactive=False)
def add_message(history, message):
if message["files"]:
for file in message["files"]:
history.append([(file,), None])
if message["text"]:
history.append([message["text"], None])
return history, gr.MultimodalTextbox(value=None)
def print_like_dislike(x: gr.LikeData):
print(x.index, x.value, x.liked)
def get_chat_history(history):
chat_history = []
user_role = conv_template.roles[0]
assistant_role = conv_template.roles[1]
for i, message in enumerate(history):
if isinstance(message[0], str):
chat_history.append({"role": user_role, "text": message[0]})
if i != len(history) - 1:
assert message[1], "The bot message is not provided, internal error"
chat_history.append({"role": assistant_role, "text": message[1]})
else:
assert not message[1], "the bot message internal error, get: {}".format(message[1])
chat_history.append({"role": assistant_role, "text": ""})
return chat_history
def get_chat_images(history):
images = []
for message in history:
if isinstance(message[0], tuple):
images.extend(message[0])
return images
def bot(history):
print(history)
cur_messages = {"text": "", "images": []}
for message in history[::-1]:
if message[1]:
break
if isinstance(message[0], str):
cur_messages["text"] = message[0] + " " + cur_messages["text"]
elif isinstance(message[0], tuple):
cur_messages["images"].extend(message[0])
cur_messages["text"] = cur_messages["text"].strip()
cur_messages["images"] = cur_messages["images"][::-1]
if not cur_messages["text"]:
raise gr.Error("Please enter a message")
if cur_messages['text'].count("<image>") < len(cur_messages['images']):
gr.Warning("The number of images uploaded is more than the number of <image> placeholders in the text. Will automatically prepend <image> to the text.")
cur_messages['text'] = "<image> "* (len(cur_messages['images']) - cur_messages['text'].count("<image>")) + cur_messages['text']
history[-1][0] = cur_messages["text"]
if cur_messages['text'].count("<image>") > len(cur_messages['images']):
gr.Warning("The number of images uploaded is less than the number of <image> placeholders in the text. Will automatically remove extra <image> placeholders from the text.")
cur_messages['text'] = cur_messages['text'][::-1].replace("<image>"[::-1], "", cur_messages['text'].count("<image>") - len(cur_messages['images']))[::-1]
history[-1][0] = cur_messages["text"]
chat_history = get_chat_history(history)
chat_images = get_chat_images(history)
generation_kwargs = {
"max_new_tokens": 4096,
"temperature": 0.2,
"top_p": 1.0,
"do_sample": True,
}
print(None, chat_images, chat_history, generation_kwargs)
response = generate(None, chat_images, chat_history, **generation_kwargs)
for _output in response:
history[-1][1] = _output
time.sleep(0.05)
yield history
def build_demo():
with gr.Blocks() as demo:
gr.Markdown(""" # Mantis
Mantis is a multimodal conversational AI model that can chat with users about images and text. It's optimized for multi-image reasoning, where inverleaved text and images can be used to generate responses.
### [Paper](https://arxiv.org/abs/2405.01483) | [Github](https://github.com/TIGER-AI-Lab/Mantis) | [Models](https://huggingface.co/collections/TIGER-Lab/mantis-6619b0834594c878cdb1d6e4) | [Dataset](https://huggingface.co/datasets/TIGER-Lab/Mantis-Instruct) | [Website](https://tiger-ai-lab.github.io/Mantis/)
""")
gr.Markdown("""## Chat with Mantis
Mantis supports interleaved text-image input format, where you can simply use the placeholder `<image>` to indicate the position of uploaded images.
The model is optimized for multi-image reasoning, while preserving the ability to chat about text and images in a single conversation.
(The model currently serving is [🤗 TIGER-Lab/Mantis-8B-siglip-llama3](https://huggingface.co/TIGER-Lab/Mantis-8B-siglip-llama3))
""")
chatbot = gr.Chatbot(line_breaks=True)
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload images. Please use <image> to indicate the position of uploaded images", show_label=True)
chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
"""
with gr.Accordion(label='Advanced options', open=False):
temperature = gr.Slider(
label='Temperature',
minimum=0.1,
maximum=2.0,
step=0.1,
value=0.2,
interactive=True
)
top_p = gr.Slider(
label='Top-p',
minimum=0.05,
maximum=1.0,
step=0.05,
value=1.0,
interactive=True
)
"""
bot_msg = chat_msg.success(bot, chatbot, chatbot, api_name="bot_response")
chatbot.like(print_like_dislike, None, None)
with gr.Row():
send_button = gr.Button("Send")
clear_button = gr.ClearButton([chatbot, chat_input])
send_button.click(
add_message, [chatbot, chat_input], [chatbot, chat_input]
).then(
bot, chatbot, chatbot, api_name="bot_response"
)
gr.Examples(
examples=[
{
"text": "<image> <image> <image> Which image shows a different mood of character from the others?",
"files": ["./examples/image12.jpg", "./examples/image13.jpg", "./examples/image14.jpg"]
},
{
"text": "<image> <image> What's the difference between these two images? Please describe as much as you can.",
"files": ["./examples/image1.jpg", "./examples/image2.jpg"]
},
{
"text": "<image> <image> Which image shows an older dog?",
"files": ["./examples/image8.jpg", "./examples/image9.jpg"]
},
{
"text": "Write a description for the given image sequence in a single paragraph, what is happening in this episode?",
"files": ["./examples/image3.jpg", "./examples/image4.jpg", "./examples/image5.jpg", "./examples/image6.jpg", "./examples/image7.jpg"]
},
{
"text": "<image> <image> How many dices are there in image 1 and image 2 respectively?",
"files": ["./examples/image10.jpg", "./examples/image15.jpg"]
},
],
inputs=[chat_input],
)
gr.Markdown("""
## Citation
```
@article{jiang2024mantis,
title={MANTIS: Interleaved Multi-Image Instruction Tuning},
author={Jiang, Dongfu and He, Xuan and Zeng, Huaye and Wei, Con and Ku, Max and Liu, Qian and Chen, Wenhu},
journal={arXiv preprint arXiv:2405.01483},
year={2024}
}```""")
return demo
if __name__ == "__main__":
demo = build_demo()
demo.launch() |