Spaces:
Runtime error
Runtime error
import gradio as gr | |
import spaces | |
import os | |
import time | |
import json | |
import numpy as np | |
import av | |
import torch | |
from PIL import Image | |
import functools | |
from transformers import AutoProcessor, AutoConfig | |
from models.idefics2 import Idefics2ForSequenceClassification | |
from models.conversation import conv_templates | |
from typing import List | |
processor = AutoProcessor.from_pretrained("Mantis-VL/mantis-8b-idefics2-video-eval-40k-mantis-2epoch_4096_regression") | |
model = Idefics2ForSequenceClassification.from_pretrained("Mantis-VL/mantis-8b-idefics2-video-eval-40k-mantis-2epoch_4096_regression", torch_dtype=torch.bfloat16).eval() | |
MAX_NUM_FRAMES = 24 | |
conv_template = conv_templates["idefics_2"] | |
with open("./examples/all_subsets.json", 'r') as f: | |
examples = json.load(f) | |
for item in examples: | |
video_id = item['images'][0].split("_")[0] | |
item['images'] = [os.path.join("./examples", video_id, x) for x in item['images']] | |
item['video'] = os.path.join("./examples", item['video']) | |
with open("./examples/hd.json", 'r') as f: | |
hd_examples = json.load(f) | |
for item in hd_examples: | |
item['video'] = os.path.join("./examples", item['video']) | |
examples = hd_examples + examples | |
VIDEO_EVAL_PROMPT = """ | |
Suppose you are an expert in judging and evaluating the quality of AI-generated videos, | |
please watch the following frames of a given video and see the text prompt for generating the video, | |
then give scores from 7 different dimensions: | |
(1) visual quality: the quality of the video in terms of clearness, resolution, brightness, and color | |
(2) object consistency, the consistency of objects or humans in video | |
(3) dynamic degree, the degree of dynamic changes | |
(4) motion smoothness, the smoothness of motion or movements | |
(5) text-to-video alignment, the alignment between the text prompt and the video content | |
(6) factual consistency, the consistency of the video content with the common-sense and factual knowledge | |
for each dimension, output a float number from 1.0 to 4.0, | |
the higher the number is, the better the video performs in that sub-score, | |
the lowest 1.0 means Bad, the highest 4.0 means Perfect/Real (the video is like a real video) | |
Here is an output example: | |
visual quality: 3.2 | |
object consistency: 2.7 | |
dynamic degree: 4.0 | |
motion smoothness: 1.6 | |
text-to-video alignment: 2.3 | |
factual consistency: 1.8 | |
For this video, the text prompt is "{text_prompt}", | |
all the frames of video are as follows: | |
""" | |
aspect_mapping= [ | |
"visual quality", | |
"temporal consistency", | |
"dynamic degree", | |
"text-to-video alignment", | |
"factual consistency", | |
] | |
def score(prompt:str, images:List[Image.Image]): | |
if not prompt: | |
raise gr.Error("Please provide a prompt") | |
model.to("cuda") | |
if not images: | |
images = None | |
flatten_images = [] | |
for x in images: | |
if isinstance(x, list): | |
flatten_images.extend(x) | |
else: | |
flatten_images.append(x) | |
flatten_images = [Image.open(x) if isinstance(x, str) else x for x in flatten_images] | |
inputs = processor(text=prompt, images=flatten_images, return_tensors="pt") | |
inputs = {k: v.to(model.device) for k, v in inputs.items()} | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
num_aspects = logits.shape[-1] | |
aspects = [aspect_mapping[i] for i in range(num_aspects)] | |
aspect_scores = {} | |
for i, aspect in enumerate(aspects): | |
aspect_scores[aspect] = round(logits[0, i].item(), 2) | |
return aspect_scores | |
def read_video_pyav(container, indices): | |
''' | |
Decode the video with PyAV decoder. | |
Args: | |
container (av.container.input.InputContainer): PyAV container. | |
indices (List[int]): List of frame indices to decode. | |
Returns: | |
np.ndarray: np array of decoded frames of shape (num_frames, height, width, 3). | |
''' | |
frames = [] | |
container.seek(0) | |
start_index = indices[0] | |
end_index = indices[-1] | |
for i, frame in enumerate(container.decode(video=0)): | |
if i > end_index: | |
break | |
if i >= start_index and i in indices: | |
frames.append(frame) | |
return np.stack([x.to_ndarray(format="rgb24") for x in frames]) | |
def eval_video(prompt, video:str): | |
container = av.open(video) | |
# sample uniformly 8 frames from the video | |
total_frames = container.streams.video[0].frames | |
if total_frames > MAX_NUM_FRAMES: | |
indices = np.arange(0, total_frames, total_frames / MAX_NUM_FRAMES).astype(int) | |
else: | |
indices = np.arange(total_frames) | |
video_frames = read_video_pyav(container, indices) | |
frames = [Image.fromarray(x) for x in video_frames] | |
eval_prompt = VIDEO_EVAL_PROMPT.format(text_prompt=prompt) | |
num_image_token = eval_prompt.count("<image>") | |
if num_image_token < len(frames): | |
eval_prompt += "<image> " * (len(frames) - num_image_token) | |
aspect_scores = score(eval_prompt, [frames]) | |
return aspect_scores | |
def build_demo(): | |
with gr.Blocks() as demo: | |
gr.Markdown(""" | |
## Video Evaluation | |
upload a video along with a text prompt when generating the video, this model will evaluate the video's quality from 7 different dimensions. | |
""") | |
with gr.Row(): | |
video = gr.Video(width=500, label="Video") | |
with gr.Column(): | |
eval_prompt_template = gr.Textbox(VIDEO_EVAL_PROMPT.strip(' \n'), label="Evaluation Prompt Template", interactive=False, max_lines=26) | |
video_prompt = gr.Textbox(label="Text Prompt", lines=1) | |
with gr.Row(): | |
eval_button = gr.Button("Evaluate Video") | |
clear_button = gr.ClearButton([video, video_prompt]) | |
# eval_result = gr.Textbox(label="Evaluation result", interactive=False, lines=7) | |
eval_result = gr.Json(label="Evaluation result") | |
eval_button.click( | |
eval_video, [video_prompt, video], [eval_result] | |
) | |
dummy_id = gr.Textbox("id", label="id", visible=False, min_width=50) | |
dummy_output = gr.Textbox("reference score", label="reference scores", visible=False, lines=7) | |
gr.Examples( | |
examples= | |
[ | |
[ | |
item['id'], | |
item['prompt'], | |
item['video'], | |
item['conversations'][1]['value'] | |
] for item in examples | |
], | |
inputs=[dummy_id, video_prompt, video, dummy_output], | |
) | |
# gr.Markdown(""" | |
# ## Citation | |
# ``` | |
# @article{jiang2024mantis, | |
# title={MANTIS: Interleaved Multi-Image Instruction Tuning}, | |
# author={Jiang, Dongfu and He, Xuan and Zeng, Huaye and Wei, Con and Ku, Max and Liu, Qian and Chen, Wenhu}, | |
# journal={arXiv preprint arXiv:2405.01483}, | |
# year={2024} | |
# } | |
# ```""") | |
return demo | |
if __name__ == "__main__": | |
demo = build_demo() | |
demo.launch(share=True) |