VideoScore / app.py
DongfuJiang's picture
update
b9d3de1
raw
history blame
11.4 kB
import gradio as gr
import spaces
import os
import time
import json
from PIL import Image
import functools
from transformers import AutoProcessor, Idefics2ForConditionalGeneration
from models.conversation import conv_templates
from typing import List
processor = AutoProcessor.from_pretrained("MFuyu/mantis-8b-idefics2-video-eval_8192_lora")
model = Idefics2ForConditionalGeneration.from_pretrained("MFuyu/mantis-8b-idefics2-video-eval_8192_lora")
conv_template = conv_templates["idefics_2"]
with open("./examples/data_subset.json", 'r') as f:
examples = json.load(f)
for item in examples:
video_id = item['images'][0].split("_")[0]
item['images'] = [os.path.join("./examples", video_id, x) for x in item['images']]
prompt = "Suppose you are an expert in judging and evaluating the quality of AI-generated videos, \nplease watch the following frames of a given video and see the text prompt for generating the video, \nthen give scores from 7 different dimensions:\n(1) visual quality, \n(2) object consistency,\n(3) dynamic degree,\n(4) motion smoothness,\n(5) text-to-video alignment,\n(6) factual consistency, \n(7) overall score\nfor each dimension, output a number from [1,2,3], in which '1' stands for 'Bad', '2' stands for 'Average', '3' stands for 'Good'.\nHere is an output example: \nvisual quality: 3\nobject consistency: 2 \ndynamic degree: 2\nmotion smoothness: 1\ntext-to-video alignment: 1\nfactual consistency: 2\noverall score: 1\n\nFor this item, the text prompt is the beautiful girl, long hair,walk on the sity street, red cloth ,\nall the frames of video are as follows: \n\n"
@spaces.GPU
def generate(text:str, images:List[Image.Image], history: List[dict], **kwargs):
global processor, model
model = model.to("cuda") if model.device.type != "cuda" else model
if not images:
images = None
user_role = conv_template.roles[0]
assistant_role = conv_template.roles[1]
idefics_2_message = []
cur_img_idx = 0
print(history)
for i, message in enumerate(history):
if message["role"] == user_role:
idefics_2_message.append({
"role": user_role,
"content": []
})
message_text = message["text"]
num_image_tokens_in_text = message_text.count("<image>")
if num_image_tokens_in_text > 0:
sub_texts = [x.strip() for x in message_text.split("<image>")]
if sub_texts[0]:
idefics_2_message[-1]["content"].append({"type": "text", "text": sub_texts[0]})
for sub_text in sub_texts[1:]:
idefics_2_message[-1]["content"].append({"type": "image"})
if sub_text:
idefics_2_message.append({
"role": user_role,
"content": [{"type": "text", "text": sub_text}]
})
else:
idefics_2_message[-1]["content"].append({"type": "text", "text": message_text})
elif message["role"] == assistant_role:
if i == len(history) - 1 and not message["text"]:
break
idefics_2_message.append({
"role": assistant_role,
"content": [{"type": "text", "text": message["text"]}]
})
if text:
assert idefics_2_message[-1]["role"] == assistant_role and not idefics_2_message[-1]["content"], "Internal error"
idefics_2_message.append({
"role": user_role,
"content": [{"type": "text", "text": text}]
})
print(idefics_2_message)
prompt = processor.apply_chat_template(idefics_2_message, add_generation_prompt=True)
images = [Image.open(x) for x in images]
inputs = processor(text=prompt, images=images, return_tensors="pt")
inputs = {k: v.to(model.device) for k, v in inputs.items()}
outputs = model.generate(**inputs, max_new_tokens=1024)
generated_text = processor.decode(outputs[0, inputs["input_ids"].shape[-1]:], skip_special_tokens=True)
return generated_text
def enable_next_image(uploaded_images, image):
uploaded_images.append(image)
return uploaded_images, gr.MultimodalTextbox(value=None, interactive=False)
def add_message(history, message):
if message["files"]:
for file in message["files"]:
history.append([(file,), None])
if message["text"]:
history.append([message["text"], None])
return history, gr.MultimodalTextbox(value=None)
def print_like_dislike(x: gr.LikeData):
print(x.index, x.value, x.liked)
def get_chat_history(history):
chat_history = []
user_role = conv_template.roles[0]
assistant_role = conv_template.roles[1]
for i, message in enumerate(history):
if isinstance(message[0], str):
chat_history.append({"role": user_role, "text": message[0]})
if i != len(history) - 1:
assert message[1], "The bot message is not provided, internal error"
chat_history.append({"role": assistant_role, "text": message[1]})
else:
assert not message[1], "the bot message internal error, get: {}".format(message[1])
chat_history.append({"role": assistant_role, "text": ""})
return chat_history
def get_chat_images(history):
images = []
for message in history:
if isinstance(message[0], tuple):
images.extend(message[0])
return images
def bot(history):
cur_messages = {"text": "", "images": []}
for message in history[::-1]:
if message[1]:
break
if isinstance(message[0], str):
cur_messages["text"] = message[0] + " " + cur_messages["text"]
elif isinstance(message[0], tuple):
cur_messages["images"].extend(message[0])
cur_messages["text"] = cur_messages["text"].strip()
cur_messages["images"] = cur_messages["images"][::-1]
if not cur_messages["text"]:
raise gr.Error("Please enter a message")
if cur_messages['text'].count("<image>") < len(cur_messages['images']):
gr.Warning("The number of images uploaded is more than the number of <image> placeholders in the text. Will automatically prepend <image> to the text.")
cur_messages['text'] += "<image> "* (len(cur_messages['images']) - cur_messages['text'].count("<image>"))
history[-1][0] = cur_messages["text"]
if cur_messages['text'].count("<image>") > len(cur_messages['images']):
gr.Warning("The number of images uploaded is less than the number of <image> placeholders in the text. Will automatically remove extra <image> placeholders from the text.")
cur_messages['text'] = cur_messages['text'][::-1].replace("<image>"[::-1], "", cur_messages['text'].count("<image>") - len(cur_messages['images']))[::-1]
history[-1][0] = cur_messages["text"]
chat_history = get_chat_history(history)
chat_images = get_chat_images(history)
generation_kwargs = {
"max_new_tokens": 4096,
"num_beams": 1,
"do_sample": False
}
response = generate(None, chat_images, chat_history, **generation_kwargs)
return response
# for _output in response:
# history[-1][1] = _output
# time.sleep(0.05)
# yield history
def get_images(video_folder:str):
"""
video folder contains images files like {video_folder_name}_00.jpg, {video_folder_name}_01.jpg, ...
"""
images = []
for file in os.listdir(video_folder):
if file.endswith(".jpg"):
images.append(Image.open(os.path.join(video_folder, file)))
# sort images by name
images.sort(key=lambda x: int(x.filename.split("_")[-1].split(".")[0]))
return images
def build_demo():
with gr.Blocks() as demo:
gr.Markdown(""" # Mantis
Mantis is a multimodal conversational AI model that can chat with users about images and text. It's optimized for multi-image reasoning, where inverleaved text and images can be used to generate responses.
### [Paper](https://arxiv.org/abs/2405.01483) | [Github](https://github.com/TIGER-AI-Lab/Mantis) | [Models](https://huggingface.co/collections/TIGER-Lab/mantis-6619b0834594c878cdb1d6e4) | [Dataset](https://huggingface.co/datasets/TIGER-Lab/Mantis-Instruct) | [Website](https://tiger-ai-lab.github.io/Mantis/)
""")
gr.Markdown("""## Chat with Mantis
Mantis supports interleaved text-image input format, where you can simply use the placeholder `<image>` to indicate the position of uploaded images.
The model is optimized for multi-image reasoning, while preserving the ability to chat about text and images in a single conversation.
(The model currently serving is [🤗 TIGER-Lab/Mantis-8B-siglip-llama3](https://huggingface.co/TIGER-Lab/Mantis-8B-siglip-llama3))
""")
chatbot = gr.Chatbot(line_breaks=True)
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload images. Please use <image> to indicate the position of uploaded images", show_label=True)
chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
"""
with gr.Accordion(label='Advanced options', open=False):
temperature = gr.Slider(
label='Temperature',
minimum=0.1,
maximum=2.0,
step=0.1,
value=0.2,
interactive=True
)
top_p = gr.Slider(
label='Top-p',
minimum=0.05,
maximum=1.0,
step=0.05,
value=1.0,
interactive=True
)
"""
bot_msg = chat_msg.success(bot, chatbot, chatbot, api_name="bot_response")
chatbot.like(print_like_dislike, None, None)
with gr.Row():
send_button = gr.Button("Send")
clear_button = gr.ClearButton([chatbot, chat_input])
send_button.click(
add_message, [chatbot, chat_input], [chatbot, chat_input]
).then(
bot, chatbot, chatbot, api_name="bot_response"
)
dummy_id = gr.Textbox("dummy_id", label="dummy_id", visible=False)
dummy_output = gr.Textbox("dummy_output", label="dummy_output", visible=False)
gr.Examples(
examples=[
[
item['id'],
{
"text": item['conversations'][0]['value'],
"files": item['images']
},
item['conversations'][1]['value']
] for item in examples
],
inputs=[dummy_id, chat_input, dummy_output],
)
gr.Markdown("""
## Citation
```
@article{jiang2024mantis,
title={MANTIS: Interleaved Multi-Image Instruction Tuning},
author={Jiang, Dongfu and He, Xuan and Zeng, Huaye and Wei, Con and Ku, Max and Liu, Qian and Chen, Wenhu},
journal={arXiv preprint arXiv:2405.01483},
year={2024}
}
```""")
return demo
if __name__ == "__main__":
demo = build_demo()
demo.launch()