Spaces:
Runtime error
Runtime error
import gradio as gr | |
import spaces | |
import os | |
import time | |
import json | |
from PIL import Image | |
import functools | |
from transformers import AutoProcessor, Idefics2ForConditionalGeneration | |
from models.conversation import conv_templates | |
from typing import List | |
processor = AutoProcessor.from_pretrained("MFuyu/mantis-8b-idefics2-video-eval_8192_lora") | |
model = Idefics2ForConditionalGeneration.from_pretrained("MFuyu/mantis-8b-idefics2-video-eval_8192_lora") | |
conv_template = conv_templates["idefics_2"] | |
with open("./examples/data_subset.json", 'r') as f: | |
examples = json.load(f) | |
for item in examples: | |
video_id = item['images'][0].split("_")[0] | |
item['images'] = [os.path.join("./examples", video_id, x) for x in item['images']] | |
prompt = "Suppose you are an expert in judging and evaluating the quality of AI-generated videos, \nplease watch the following frames of a given video and see the text prompt for generating the video, \nthen give scores from 7 different dimensions:\n(1) visual quality, \n(2) object consistency,\n(3) dynamic degree,\n(4) motion smoothness,\n(5) text-to-video alignment,\n(6) factual consistency, \n(7) overall score\nfor each dimension, output a number from [1,2,3], in which '1' stands for 'Bad', '2' stands for 'Average', '3' stands for 'Good'.\nHere is an output example: \nvisual quality: 3\nobject consistency: 2 \ndynamic degree: 2\nmotion smoothness: 1\ntext-to-video alignment: 1\nfactual consistency: 2\noverall score: 1\n\nFor this item, the text prompt is the beautiful girl, long hair,walk on the sity street, red cloth ,\nall the frames of video are as follows: \n\n" | |
def generate(text:str, images:List[Image.Image], history: List[dict], **kwargs): | |
global processor, model | |
model = model.to("cuda") if model.device.type != "cuda" else model | |
if not images: | |
images = None | |
user_role = conv_template.roles[0] | |
assistant_role = conv_template.roles[1] | |
idefics_2_message = [] | |
cur_img_idx = 0 | |
print(history) | |
for i, message in enumerate(history): | |
if message["role"] == user_role: | |
idefics_2_message.append({ | |
"role": user_role, | |
"content": [] | |
}) | |
message_text = message["text"] | |
num_image_tokens_in_text = message_text.count("<image>") | |
if num_image_tokens_in_text > 0: | |
sub_texts = [x.strip() for x in message_text.split("<image>")] | |
if sub_texts[0]: | |
idefics_2_message[-1]["content"].append({"type": "text", "text": sub_texts[0]}) | |
for sub_text in sub_texts[1:]: | |
idefics_2_message[-1]["content"].append({"type": "image"}) | |
if sub_text: | |
idefics_2_message.append({ | |
"role": user_role, | |
"content": [{"type": "text", "text": sub_text}] | |
}) | |
else: | |
idefics_2_message[-1]["content"].append({"type": "text", "text": message_text}) | |
elif message["role"] == assistant_role: | |
if i == len(history) - 1 and not message["text"]: | |
break | |
idefics_2_message.append({ | |
"role": assistant_role, | |
"content": [{"type": "text", "text": message["text"]}] | |
}) | |
if text: | |
assert idefics_2_message[-1]["role"] == assistant_role and not idefics_2_message[-1]["content"], "Internal error" | |
idefics_2_message.append({ | |
"role": user_role, | |
"content": [{"type": "text", "text": text}] | |
}) | |
print(idefics_2_message) | |
prompt = processor.apply_chat_template(idefics_2_message, add_generation_prompt=True) | |
images = [Image.open(x) for x in images] | |
inputs = processor(text=prompt, images=images, return_tensors="pt") | |
inputs = {k: v.to(model.device) for k, v in inputs.items()} | |
outputs = model.generate(**inputs, max_new_tokens=1024) | |
generated_text = processor.decode(outputs[0, inputs["input_ids"].shape[-1]:], skip_special_tokens=True) | |
return generated_text | |
def enable_next_image(uploaded_images, image): | |
uploaded_images.append(image) | |
return uploaded_images, gr.MultimodalTextbox(value=None, interactive=False) | |
def add_message(history, message): | |
if message["files"]: | |
for file in message["files"]: | |
history.append([(file,), None]) | |
if message["text"]: | |
history.append([message["text"], None]) | |
return history, gr.MultimodalTextbox(value=None) | |
def print_like_dislike(x: gr.LikeData): | |
print(x.index, x.value, x.liked) | |
def get_chat_history(history): | |
chat_history = [] | |
user_role = conv_template.roles[0] | |
assistant_role = conv_template.roles[1] | |
for i, message in enumerate(history): | |
if isinstance(message[0], str): | |
chat_history.append({"role": user_role, "text": message[0]}) | |
if i != len(history) - 1: | |
assert message[1], "The bot message is not provided, internal error" | |
chat_history.append({"role": assistant_role, "text": message[1]}) | |
else: | |
assert not message[1], "the bot message internal error, get: {}".format(message[1]) | |
chat_history.append({"role": assistant_role, "text": ""}) | |
return chat_history | |
def get_chat_images(history): | |
images = [] | |
for message in history: | |
if isinstance(message[0], tuple): | |
images.extend(message[0]) | |
return images | |
def bot(history): | |
cur_messages = {"text": "", "images": []} | |
for message in history[::-1]: | |
if message[1]: | |
break | |
if isinstance(message[0], str): | |
cur_messages["text"] = message[0] + " " + cur_messages["text"] | |
elif isinstance(message[0], tuple): | |
cur_messages["images"].extend(message[0]) | |
cur_messages["text"] = cur_messages["text"].strip() | |
cur_messages["images"] = cur_messages["images"][::-1] | |
if not cur_messages["text"]: | |
raise gr.Error("Please enter a message") | |
if cur_messages['text'].count("<image>") < len(cur_messages['images']): | |
gr.Warning("The number of images uploaded is more than the number of <image> placeholders in the text. Will automatically prepend <image> to the text.") | |
cur_messages['text'] += "<image> "* (len(cur_messages['images']) - cur_messages['text'].count("<image>")) | |
history[-1][0] = cur_messages["text"] | |
if cur_messages['text'].count("<image>") > len(cur_messages['images']): | |
gr.Warning("The number of images uploaded is less than the number of <image> placeholders in the text. Will automatically remove extra <image> placeholders from the text.") | |
cur_messages['text'] = cur_messages['text'][::-1].replace("<image>"[::-1], "", cur_messages['text'].count("<image>") - len(cur_messages['images']))[::-1] | |
history[-1][0] = cur_messages["text"] | |
chat_history = get_chat_history(history) | |
chat_images = get_chat_images(history) | |
generation_kwargs = { | |
"max_new_tokens": 4096, | |
"num_beams": 1, | |
"do_sample": False | |
} | |
response = generate(None, chat_images, chat_history, **generation_kwargs) | |
return response | |
# for _output in response: | |
# history[-1][1] = _output | |
# time.sleep(0.05) | |
# yield history | |
def get_images(video_folder:str): | |
""" | |
video folder contains images files like {video_folder_name}_00.jpg, {video_folder_name}_01.jpg, ... | |
""" | |
images = [] | |
for file in os.listdir(video_folder): | |
if file.endswith(".jpg"): | |
images.append(Image.open(os.path.join(video_folder, file))) | |
# sort images by name | |
images.sort(key=lambda x: int(x.filename.split("_")[-1].split(".")[0])) | |
return images | |
def build_demo(): | |
with gr.Blocks() as demo: | |
gr.Markdown(""" # Mantis | |
Mantis is a multimodal conversational AI model that can chat with users about images and text. It's optimized for multi-image reasoning, where inverleaved text and images can be used to generate responses. | |
### [Paper](https://arxiv.org/abs/2405.01483) | [Github](https://github.com/TIGER-AI-Lab/Mantis) | [Models](https://huggingface.co/collections/TIGER-Lab/mantis-6619b0834594c878cdb1d6e4) | [Dataset](https://huggingface.co/datasets/TIGER-Lab/Mantis-Instruct) | [Website](https://tiger-ai-lab.github.io/Mantis/) | |
""") | |
gr.Markdown("""## Chat with Mantis | |
Mantis supports interleaved text-image input format, where you can simply use the placeholder `<image>` to indicate the position of uploaded images. | |
The model is optimized for multi-image reasoning, while preserving the ability to chat about text and images in a single conversation. | |
(The model currently serving is [🤗 TIGER-Lab/Mantis-8B-siglip-llama3](https://huggingface.co/TIGER-Lab/Mantis-8B-siglip-llama3)) | |
""") | |
chatbot = gr.Chatbot(line_breaks=True) | |
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload images. Please use <image> to indicate the position of uploaded images", show_label=True) | |
chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input]) | |
""" | |
with gr.Accordion(label='Advanced options', open=False): | |
temperature = gr.Slider( | |
label='Temperature', | |
minimum=0.1, | |
maximum=2.0, | |
step=0.1, | |
value=0.2, | |
interactive=True | |
) | |
top_p = gr.Slider( | |
label='Top-p', | |
minimum=0.05, | |
maximum=1.0, | |
step=0.05, | |
value=1.0, | |
interactive=True | |
) | |
""" | |
bot_msg = chat_msg.success(bot, chatbot, chatbot, api_name="bot_response") | |
chatbot.like(print_like_dislike, None, None) | |
with gr.Row(): | |
send_button = gr.Button("Send") | |
clear_button = gr.ClearButton([chatbot, chat_input]) | |
send_button.click( | |
add_message, [chatbot, chat_input], [chatbot, chat_input] | |
).then( | |
bot, chatbot, chatbot, api_name="bot_response" | |
) | |
dummy_id = gr.Textbox("dummy_id", label="dummy_id", visible=False) | |
dummy_output = gr.Textbox("dummy_output", label="dummy_output", visible=False) | |
gr.Examples( | |
examples=[ | |
[ | |
item['id'], | |
{ | |
"text": item['conversations'][0]['value'], | |
"files": item['images'] | |
}, | |
item['conversations'][1]['value'] | |
] for item in examples | |
], | |
inputs=[dummy_id, chat_input, dummy_output], | |
) | |
gr.Markdown(""" | |
## Citation | |
``` | |
@article{jiang2024mantis, | |
title={MANTIS: Interleaved Multi-Image Instruction Tuning}, | |
author={Jiang, Dongfu and He, Xuan and Zeng, Huaye and Wei, Con and Ku, Max and Liu, Qian and Chen, Wenhu}, | |
journal={arXiv preprint arXiv:2405.01483}, | |
year={2024} | |
} | |
```""") | |
return demo | |
if __name__ == "__main__": | |
demo = build_demo() | |
demo.launch() |