Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- app.py +90 -0
- model_00350.pt +3 -0
- model_file.py +354 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import GPT2Tokenizer
|
3 |
+
import gradio as gr
|
4 |
+
import tiktoken
|
5 |
+
import model_file
|
6 |
+
from dataclasses import dataclass
|
7 |
+
import time
|
8 |
+
import os
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
num_return_sequences = 1
|
12 |
+
max_length = 100
|
13 |
+
|
14 |
+
|
15 |
+
@dataclass
|
16 |
+
class GPTConfig:
|
17 |
+
block_size: int = 1024
|
18 |
+
vocab_size: int = 50304
|
19 |
+
n_layer: int = 12
|
20 |
+
n_head: int = 12
|
21 |
+
n_embd: int = 768
|
22 |
+
|
23 |
+
|
24 |
+
# tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
25 |
+
tokenizer = tiktoken.get_encoding("gpt2")
|
26 |
+
|
27 |
+
device = "cpu"
|
28 |
+
if torch.cuda.is_available():
|
29 |
+
device = "cuda"
|
30 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
31 |
+
device = "mps"
|
32 |
+
|
33 |
+
device = torch.device(device)
|
34 |
+
|
35 |
+
try:
|
36 |
+
model = model_file.get_model().to(device)
|
37 |
+
checkpoint = torch.load(os.path.join(os.path.dirname(__file__), "model_00350.pt"), map_location=device)
|
38 |
+
state_dict = {key.replace("_orig_mod.", ""): value for key, value in checkpoint['model'].items()}
|
39 |
+
model.load_state_dict(state_dict=state_dict)
|
40 |
+
model.eval()
|
41 |
+
print("Model loaded successfully.")
|
42 |
+
except Exception as e:
|
43 |
+
print(f"Error loading model: {e}")
|
44 |
+
raise e
|
45 |
+
|
46 |
+
examples = [
|
47 |
+
"Who are you?",
|
48 |
+
"Write a Shakespeare short poem.",
|
49 |
+
"Tell me a joke.",
|
50 |
+
"What is the meaning of life?",
|
51 |
+
]
|
52 |
+
|
53 |
+
|
54 |
+
def chat_fn(message, history):
|
55 |
+
# Tokenize
|
56 |
+
print(f"message: {message}")
|
57 |
+
tokens = tokenizer.encode(message)
|
58 |
+
tokens = torch.tensor(tokens, dtype=torch.int32)
|
59 |
+
tokens = tokens.unsqueeze(0).repeat(num_return_sequences, 1)
|
60 |
+
x = tokens.to(device)
|
61 |
+
while x.size(1) < max_length:
|
62 |
+
# forward pass through model to get logits
|
63 |
+
with torch.no_grad():
|
64 |
+
logits = model(x)[0] # batch_size, T, vocab_size
|
65 |
+
logits = logits[:, -1, :] # get last position logits B, vocab_size
|
66 |
+
|
67 |
+
# calculate probabilities
|
68 |
+
probs = F.softmax(logits, dim=-1)
|
69 |
+
|
70 |
+
# doing topk here, HF defafult is 50
|
71 |
+
# topk is (5, 50), top_indices is (5, 50) too
|
72 |
+
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
|
73 |
+
|
74 |
+
# sampling a token from topk
|
75 |
+
ix = torch.multinomial(input=topk_probs, num_samples=1) # (B, 1) (5, 1)
|
76 |
+
|
77 |
+
# gather corresponding indices
|
78 |
+
xcol = torch.gather(input=topk_indices, dim=-1, index=ix)
|
79 |
+
# append to the seq
|
80 |
+
x = torch.cat([x, xcol], dim=1)
|
81 |
+
|
82 |
+
for i in range(num_return_sequences):
|
83 |
+
tokens = x[i, :max_length].tolist()
|
84 |
+
decoded = tokenizer.decode(tokens)
|
85 |
+
|
86 |
+
yield decoded
|
87 |
+
|
88 |
+
|
89 |
+
gr.ChatInterface(chat_fn, examples=examples).launch()
|
90 |
+
# interface.launch()
|
model_00350.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1e55d3d3c97b288aeb1659b766d405b8fcee33051dac8281869a0063c77a3d0
|
3 |
+
size 548296450
|
model_file.py
ADDED
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import tiktoken
|
3 |
+
import inspect
|
4 |
+
from dataclasses import dataclass
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
|
9 |
+
|
10 |
+
@dataclass
|
11 |
+
class GPTConfig:
|
12 |
+
block_size: int = 1024 # this is max sequence len
|
13 |
+
vocab_size: int = 50304 # 50257 # total vocab including 256 bytes + 1 special token (<|endoftext|>) and 1000-257 BPE merges
|
14 |
+
n_layer: int = 12 # number of layers
|
15 |
+
n_head: int = 12 # total number of attention heads
|
16 |
+
n_embd: int = 768 # embedding dimension
|
17 |
+
|
18 |
+
|
19 |
+
class CausalSelfAttention(nn.Module):
|
20 |
+
def __init__(self, config):
|
21 |
+
super().__init__()
|
22 |
+
n_head = config.n_head
|
23 |
+
n_embd = config.n_embd
|
24 |
+
|
25 |
+
assert n_embd % n_head == 0
|
26 |
+
|
27 |
+
# query, key, value prjections all combined
|
28 |
+
self.c_attn = nn.Linear(n_embd, 3 * n_embd)
|
29 |
+
|
30 |
+
# output projection, after `v` is already multiplied with attention_scores
|
31 |
+
self.c_proj = nn.Linear(n_embd, n_embd)
|
32 |
+
|
33 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
34 |
+
|
35 |
+
block_size = config.block_size
|
36 |
+
|
37 |
+
self.register_buffer('bias', torch.tril(torch.ones(block_size, block_size)).view(1, 1, block_size, block_size))
|
38 |
+
|
39 |
+
self.n_embd = n_embd
|
40 |
+
self.n_head = n_head
|
41 |
+
|
42 |
+
def forward(self, x):
|
43 |
+
B, T, C = x.size() # batch_size, sequence_len, embedding_dim (n_embd)
|
44 |
+
# total dim = n_head * head_size
|
45 |
+
# example GPT2 has 12 heads with each hs = 64 thus C= 12*64 = 768
|
46 |
+
|
47 |
+
qkv = self.c_attn(x) # get combined qkv matix B, T, n_embd * 3(768*3=2304)
|
48 |
+
|
49 |
+
q, k, v = qkv.split(self.n_embd, dim=2) # each item gets n_embd size, dimension against two
|
50 |
+
|
51 |
+
# b, seq, n_embd -> b, seq, n_heads, head_size -> b, n_heads, seq_len, head_size
|
52 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
53 |
+
# final-> bs, n_heads, seq_len, mini-n_head_embd
|
54 |
+
|
55 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
56 |
+
|
57 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
58 |
+
|
59 |
+
# # print(f"shape of q: {q.shape}... shape of k : {k.shape}")
|
60 |
+
|
61 |
+
# attn = (q @ k.transpose(-2, -1))/(math.sqrt(k.shape[-1]))
|
62 |
+
|
63 |
+
# # apply masked fill at places where mask ==0, remember tril is lower triangle
|
64 |
+
# attn = attn.masked_fill(mask = self.bias[ : , : , :T, :T] == 0, value=float('-inf'))
|
65 |
+
|
66 |
+
# attn = F.softmax(attn, dim=-1)
|
67 |
+
|
68 |
+
# y = attn @ v # B, n_heads, T/seq, T @ B, n_heads, T/Seq, head_size) -> B, n_heads, T, head_size
|
69 |
+
|
70 |
+
y = F.scaled_dot_product_attention(q, k, v, is_causal=True) # flash attention
|
71 |
+
|
72 |
+
# transpose y to merge all n_heads. B, n_heads, T, head_size -> transpose B, T, n_heads, head_size -> view B, T, Channel_size/n_emb 768
|
73 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C)
|
74 |
+
|
75 |
+
# out projection, B, T, C -> B, T, C
|
76 |
+
y = self.c_proj(y)
|
77 |
+
|
78 |
+
return y
|
79 |
+
|
80 |
+
def generate(self, prompt):
|
81 |
+
if not isinstance(prompt, str) or len(prompt) == 0:
|
82 |
+
return "Say something!"
|
83 |
+
|
84 |
+
|
85 |
+
class MLP(nn.Module):
|
86 |
+
def __init__(self, config):
|
87 |
+
super().__init__()
|
88 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
89 |
+
self.gelu = nn.GELU(approximate='tanh')
|
90 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
91 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
92 |
+
|
93 |
+
def forward(self, x):
|
94 |
+
x = self.c_fc(x)
|
95 |
+
x = self.gelu(x)
|
96 |
+
x = self.c_proj(x)
|
97 |
+
return x
|
98 |
+
|
99 |
+
|
100 |
+
class Block(nn.Module):
|
101 |
+
def __init__(self, config):
|
102 |
+
super().__init__()
|
103 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
104 |
+
self.attn = CausalSelfAttention(config)
|
105 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
106 |
+
self.mlp = MLP(config)
|
107 |
+
|
108 |
+
def forward(self, x):
|
109 |
+
x = x + self.attn(self.ln_1(x))
|
110 |
+
x = x + self.mlp(self.ln_2(x))
|
111 |
+
return x
|
112 |
+
|
113 |
+
|
114 |
+
class GPT(nn.Module):
|
115 |
+
def __init__(self, config):
|
116 |
+
super().__init__()
|
117 |
+
self.config = config
|
118 |
+
|
119 |
+
self.transformer = nn.ModuleDict(
|
120 |
+
dict(
|
121 |
+
wte=nn.Embedding(config.vocab_size, config.n_embd),
|
122 |
+
wpe=nn.Embedding(config.block_size, config.n_embd),
|
123 |
+
h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
124 |
+
ln_f=nn.LayerNorm(config.n_embd)
|
125 |
+
))
|
126 |
+
|
127 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
128 |
+
|
129 |
+
# weight sharing
|
130 |
+
self.transformer.wte.weight = self.lm_head.weight
|
131 |
+
|
132 |
+
# weight initialization
|
133 |
+
self.apply(self._init_weights)
|
134 |
+
|
135 |
+
def _init_weights(self, module):
|
136 |
+
if isinstance(module, nn.Linear):
|
137 |
+
std = 0.02
|
138 |
+
if hasattr(module, 'NANOGPT_SCALE_INIT'):
|
139 |
+
std *= (2 * self.config.n_layer) ** -0.5
|
140 |
+
|
141 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
|
142 |
+
|
143 |
+
if module.bias is not None:
|
144 |
+
torch.nn.init.zeros_(module.bias)
|
145 |
+
|
146 |
+
elif isinstance(module, nn.Embedding):
|
147 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
148 |
+
|
149 |
+
def forward(self, idx, targets=None):
|
150 |
+
B, T = idx.size() # batch , seq_len
|
151 |
+
|
152 |
+
# check if incoming seq_len of idx is within limits
|
153 |
+
assert T <= self.config.block_size, f"Cannot proceed as your Sequence len : {T} is more than {self.config.block_size}"
|
154 |
+
|
155 |
+
# forward for token and position encodings
|
156 |
+
# shape (T)
|
157 |
+
pos = torch.arange(0, T, dtype=torch.int32, device=idx.device)
|
158 |
+
pos_emb = self.transformer.wpe(pos) # position embds of shape (T, n_embd)
|
159 |
+
token_emb = self.transformer.wte(idx) # token embds of shape (Batch, T/seq_len, n_embd)
|
160 |
+
|
161 |
+
x = pos_emb + token_emb
|
162 |
+
|
163 |
+
# now forward through transformer blocks
|
164 |
+
for block in self.transformer.h:
|
165 |
+
x = block(x)
|
166 |
+
|
167 |
+
# pass through final layernorm
|
168 |
+
x = self.transformer.ln_f(x)
|
169 |
+
|
170 |
+
# pass through final LM_HEAD
|
171 |
+
logits = self.lm_head(x) # shape (Batch_size, T, vocab_size)
|
172 |
+
|
173 |
+
loss = None
|
174 |
+
if targets is not None:
|
175 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
176 |
+
|
177 |
+
return logits, loss
|
178 |
+
|
179 |
+
def configure_optimizers(self, weight_decay, learning_rate, device_type):
|
180 |
+
# start with all of the candidate parameters (that require grad)
|
181 |
+
param_dict = {pn: p for pn, p in self.named_parameters()}
|
182 |
+
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
|
183 |
+
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
|
184 |
+
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
|
185 |
+
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
|
186 |
+
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
|
187 |
+
optim_groups = [
|
188 |
+
{'params': decay_params, 'weight_decay': weight_decay},
|
189 |
+
{'params': nodecay_params, 'weight_decay': 0.0}
|
190 |
+
]
|
191 |
+
num_decay_params = sum(p.numel() for p in decay_params)
|
192 |
+
num_nodecay_params = sum(p.numel() for p in nodecay_params)
|
193 |
+
|
194 |
+
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
|
195 |
+
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
|
196 |
+
# Create AdamW optimizer and use the fused version if it is available
|
197 |
+
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
|
198 |
+
use_fused = fused_available and device_type == "cuda"
|
199 |
+
|
200 |
+
print(f"using fused AdamW: {use_fused}")
|
201 |
+
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused)
|
202 |
+
return optimizer
|
203 |
+
|
204 |
+
|
205 |
+
class DataLoaderLite:
|
206 |
+
def __init__(self, B, T, process_rank, num_processes):
|
207 |
+
self.B = B
|
208 |
+
self.T = T
|
209 |
+
self.process_rank = process_rank
|
210 |
+
self.num_processes = num_processes
|
211 |
+
|
212 |
+
with open('input.txt', 'r') as f:
|
213 |
+
text = f.read()
|
214 |
+
enc = tiktoken.get_encoding('gpt2')
|
215 |
+
tokens = enc.encode(text)
|
216 |
+
self.tokens = torch.tensor(tokens)
|
217 |
+
print(f'loaded len : {len(self.tokens)}')
|
218 |
+
# print(f'1 epoch = {len(self.tokens)//(B*T)} batches ')
|
219 |
+
self.current_position = self.B * self.T * self.process_rank
|
220 |
+
|
221 |
+
def next_batch(self):
|
222 |
+
B, T = self.B, self.T
|
223 |
+
buf = self.tokens[self.current_position: self.current_position + (B * T) + 1]
|
224 |
+
y = buf[1:].view(B, T)
|
225 |
+
x = buf[:-1].view(B, T)
|
226 |
+
|
227 |
+
self.current_position += (B * T * self.num_processes)
|
228 |
+
|
229 |
+
if self.current_position + (B * T * self.num_processes + 1) > len(self.tokens):
|
230 |
+
self.current_position = self.B * self.T * self.process_rank
|
231 |
+
return x, y
|
232 |
+
|
233 |
+
|
234 |
+
def get_model():
|
235 |
+
model = GPT(GPTConfig())
|
236 |
+
return model
|
237 |
+
|
238 |
+
# cuda = torch.cuda.is_available()
|
239 |
+
# torch.set_float32_matmul_precision('high')
|
240 |
+
|
241 |
+
# max_lr = 6e-4
|
242 |
+
# min_lr = 0.1 * max_lr
|
243 |
+
# warmup_steps = 10
|
244 |
+
# max_steps = 5000
|
245 |
+
|
246 |
+
# def get_lr(iteration):
|
247 |
+
# if iteration < warmup_steps:
|
248 |
+
# return max_lr * (iteration + 1) / warmup_steps
|
249 |
+
# if iteration > max_steps:
|
250 |
+
# return min_lr
|
251 |
+
|
252 |
+
# decay_ratio = (iteration - warmup_steps) / (max_steps - warmup_steps)
|
253 |
+
|
254 |
+
# assert 0<= decay_ratio <= 1
|
255 |
+
|
256 |
+
# coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
|
257 |
+
# return min_lr + coeff * (max_lr - min_lr)
|
258 |
+
|
259 |
+
|
260 |
+
# model = GPT(GPTConfig()).to(device=device)
|
261 |
+
|
262 |
+
# model = torch.compile(model, mode='default')
|
263 |
+
|
264 |
+
# if ddp:
|
265 |
+
# print("\n\n====================================\nDDP")
|
266 |
+
# model = DDP(module=model,device_ids=[ddp_local_rank])
|
267 |
+
|
268 |
+
# raw_model = model.module if ddp else model
|
269 |
+
|
270 |
+
# # optimizer = torch.optim.AdamW(model.parameters(), lr=3e-4, betas=(0.9, 0.95), eps=1e-8)
|
271 |
+
# optimizer = raw_model.configure_optimizers(weight_decay=0.1, learning_rate=6e-4, device_type=device)
|
272 |
+
|
273 |
+
|
274 |
+
# total_batch_size = 524288
|
275 |
+
|
276 |
+
# B = 16
|
277 |
+
# T = 1024
|
278 |
+
|
279 |
+
# assert total_batch_size % (B * T * ddp_world_size) == 0, "just to make sure total batch size is divisible by B*T"
|
280 |
+
|
281 |
+
# grad_accumulation_steps = total_batch_size // (B * T * ddp_world_size)
|
282 |
+
|
283 |
+
# if master_process:
|
284 |
+
# print(f"\nGradient accumulation steps needed with B: {B} and T: {T} for total batch size: {total_batch_size} = {grad_accumulation_steps}")
|
285 |
+
# print(f"total params: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
|
286 |
+
|
287 |
+
|
288 |
+
# train_loader = DataLoaderLite(B=B, T=T, process_rank=ddp_rank, num_processes=ddp_world_size)
|
289 |
+
|
290 |
+
# # torch.cuda.amp.autocast(enabled=True)
|
291 |
+
# torch.backends.cuda.matmul.allow_tf32 = True
|
292 |
+
# torch.backends.cudnn.allow_tf32 = True
|
293 |
+
|
294 |
+
# log_dir = "logs"
|
295 |
+
# os.makedirs(log_dir, exist_ok=True)
|
296 |
+
|
297 |
+
# start= time.time()
|
298 |
+
|
299 |
+
# for step in range(max_steps):
|
300 |
+
# t0 = time.time()
|
301 |
+
# optimizer.zero_grad()
|
302 |
+
|
303 |
+
# loss_mini = 0.0
|
304 |
+
# for micro_step in range(grad_accumulation_steps):
|
305 |
+
# x, y = train_loader.next_batch()
|
306 |
+
# x, y = x.to(device=device), y.to(device)
|
307 |
+
# with torch.autocast(device_type='cuda', dtype=torch.bfloat16):
|
308 |
+
# logits, loss = model(x, y)
|
309 |
+
# # if i == 0:
|
310 |
+
# # assert logits.dtype == torch.bfloat16
|
311 |
+
# # assert loss.dtype == torch.float32
|
312 |
+
# # assert model.transformer.wte.weight.dtype == torch.float32
|
313 |
+
|
314 |
+
# loss = loss/grad_accumulation_steps
|
315 |
+
# loss_mini += loss.detach()
|
316 |
+
# if ddp:
|
317 |
+
# model.require_backward_grad_sync = (micro_step == grad_accumulation_steps - 1)
|
318 |
+
# loss.backward()
|
319 |
+
# if ddp:
|
320 |
+
# dist.all_reduce(loss_mini, op=dist.ReduceOp.AVG)
|
321 |
+
# if master_process and step%50==0 and step > 100:
|
322 |
+
# print(f"saving at: {step}")
|
323 |
+
# checkpoint_path = os.path.join(log_dir, f"model_{step:05d}.pt")
|
324 |
+
# checkpoint = {
|
325 |
+
# 'model': raw_model.state_dict(),
|
326 |
+
# 'config': raw_model.config,
|
327 |
+
# 'step': step
|
328 |
+
# }
|
329 |
+
# torch.save(checkpoint, checkpoint_path)
|
330 |
+
# # grad clip
|
331 |
+
# norm = torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
332 |
+
|
333 |
+
# lr = get_lr(step)
|
334 |
+
# for param_group in optimizer.param_groups:
|
335 |
+
# param_group['lr'] = lr
|
336 |
+
|
337 |
+
# optimizer.step()
|
338 |
+
# torch.cuda.synchronize()
|
339 |
+
|
340 |
+
# t1 = time.time()
|
341 |
+
# dt = (t1 - t0)
|
342 |
+
# tokens_per_sec = (train_loader.B * train_loader.T * grad_accumulation_steps * ddp_world_size) / (dt)
|
343 |
+
# if master_process:
|
344 |
+
# # print happens via CPU, hence wait (synchronize GPU)
|
345 |
+
# print(f'step : {step+1} | loss: {loss_mini.item()} | lr: {lr:.7f} | dt: {dt* 1000:.2f} ms | tokens/sec: {tokens_per_sec:_.6f} | norm: {norm:.2f}')
|
346 |
+
|
347 |
+
|
348 |
+
# end = time.time()
|
349 |
+
# print("final loss: ", loss*grad_accumulation_steps)
|
350 |
+
# print(f"total time: {end - start} seconds")
|
351 |
+
# torch.save(model.state_dict(), "5k-run-new-DDP.pt")
|
352 |
+
|
353 |
+
# if ddp:
|
354 |
+
# destroy_process_group()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
tiktoken
|
3 |
+
transformers
|
4 |
+
gradio
|