import torch import torchvision from torchvision import transforms import gradio as gr import numpy as np from PIL import Image from pytorch_grad_cam import GradCAM from pytorch_grad_cam.utils.image import show_cam_on_image from resnet import ResNet18 model = ResNet18() model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu') ), strict=False) inv_normalize = transforms.Normalize( mean=[-0.50/0.23, -0.50/0.23, -0.50/0.23], std = [1/0.23, 1/0.23, 1/0.23] ) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') def resize_image_pil(image, new_width, new_height): # convert to PIL IMage img = Image.fromarray(np.array(image)) # get original size width, height = img.size # calculate scale width_scale = new_width/width height_scale = new_height/height scale = min(width_scale, height_scale) # resize resized = img.resize(size=(int(width*scale), int(height*scale)), resample=Image.NEAREST) # crop resized image resized = resized.crop((0, 0, new_width, new_height)) return resized # def inference(input_img, transparency): # transform = transforms.ToTensor() # input_img = transform(input_img) # input_img = input_img.to(device) # input_img = input_img.unsqueeze(0) # outputs = model(input_img) # _, prediction = torch.max(outputs, 1) # target_layers = [model.layer2[-2]] # cam = GradCAM(model=model, target_layers=target_layers, use_cuda=True) # grayscale_cam = cam(input_tensor=input_img, targets=targets) # grayscale_cam = grayscale_cam[0, :] # img = input_img.squeeze(0).to('cpu') # img = inv_normalize(img) # rgb_img = np.transpose(img, (1, 2, 0)) # rgb_img = rgb_img.numpy() # visualization = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True, image_weight=transparency) # return classes[prediction[0].item()], visualization def inference(input_img, transparency=0.5, target_layer_number=-1): input_img = resize_image_pil(input_img, 32, 32) input_img = np.array(input_img) org_img= input_img input_img = input_img.reshape((32, 32, 3)) transform = transforms.ToTensor() input_img = transform(input_img) input_img = input_img.unsqueeze(0) outputs = model(input_img) softmax = torch.nn.Softmax(dim=0) o = softmax(outputs.flatten()) confidences = {classes[i] : float(o[i]) for i in range(10)} _, prediction = torch.max(outputs, 1) target_layers = [model.layer2[target_layer_number]] cam = GradCAM(model=model, target_layers = target_layers) grayscale_cam = cam(input_tensor=input_img, targets=None) grayscale_cam = grayscale_cam[0, :] visualization = show_cam_on_image( org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency ) return classes[prediction[0].item()], visualization, confidences demo = gr.Interface( fn=inference, inputs=[ gr.Image(width=256, height=256, label="Input Image"), gr.Slider(0,1, value=0.5, label="Overall opacity value"), gr.Slider(-2, -1, value=-2, label="Which model layer to use for GradCAM?") ], outputs = [ "text", gr.Image(width=256, height=256, label="Output"), gr.Label(num_top_classes=3) ], title="CIFAR10 trained on ResNet18 with GradCAM", description = "A simple Gradio interface to infer on ResNet model with GradCAM results shown on top.", examples = [ ["cat.jpg", 0.5, -1], ["dog.jpg", 0.7, -2] ] ) demo.launch()