Transfer code
Browse files- app.py +339 -1
- katip-december.csv +0 -0
- requirements.txt +13 -0
- stopwords-tl.json +1 -0
app.py
CHANGED
@@ -1,7 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
def greet(name):
|
4 |
return "Hello " + name + "!!"
|
5 |
|
6 |
-
iface = gr.Interface(fn=
|
7 |
iface.launch()
|
|
|
1 |
+
# Required Libraries
|
2 |
+
|
3 |
+
#Base and Cleaning
|
4 |
+
import json
|
5 |
+
import requests
|
6 |
+
import pandas as pd
|
7 |
+
import numpy as np
|
8 |
+
import emoji
|
9 |
+
import regex
|
10 |
+
import re
|
11 |
+
import string
|
12 |
+
from collections import Counter
|
13 |
+
import tqdm
|
14 |
+
from operator import itemgetter
|
15 |
+
|
16 |
+
#Visualizations
|
17 |
+
import plotly.express as px
|
18 |
+
import seaborn as sns
|
19 |
+
import matplotlib.pyplot as plt
|
20 |
+
import pyLDAvis.gensim
|
21 |
+
import chart_studio
|
22 |
+
import chart_studio.plotly as py
|
23 |
+
import chart_studio.tools as tls
|
24 |
+
|
25 |
+
#Natural Language Processing (NLP)
|
26 |
+
import spacy
|
27 |
+
import gensim
|
28 |
+
import json
|
29 |
+
from spacy.tokenizer import Tokenizer
|
30 |
+
from gensim.corpora import Dictionary
|
31 |
+
from gensim.models.ldamulticore import LdaMulticore
|
32 |
+
from gensim.models.coherencemodel import CoherenceModel
|
33 |
+
from gensim.parsing.preprocessing import STOPWORDS as SW
|
34 |
+
from sklearn.decomposition import LatentDirichletAllocation, TruncatedSVD
|
35 |
+
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
|
36 |
+
from sklearn.model_selection import GridSearchCV
|
37 |
+
from pprint import pprint
|
38 |
+
from wordcloud import STOPWORDS
|
39 |
+
from gensim.parsing.preprocessing import preprocess_string, strip_punctuation, strip_numeric
|
40 |
+
|
41 |
import gradio as gr
|
42 |
|
43 |
+
def give_emoji_free_text(text):
|
44 |
+
"""
|
45 |
+
Removes emoji's from tweets
|
46 |
+
Accepts:
|
47 |
+
Text (tweets)
|
48 |
+
Returns:
|
49 |
+
Text (emoji free tweets)
|
50 |
+
"""
|
51 |
+
emoji_list = [c for c in text if c in emoji.EMOJI_DATA]
|
52 |
+
clean_text = ' '.join([str for str in text.split() if not any(i in str for i in emoji_list)])
|
53 |
+
return clean_text
|
54 |
+
|
55 |
+
def url_free_text(text):
|
56 |
+
'''
|
57 |
+
Cleans text from urls
|
58 |
+
'''
|
59 |
+
text = re.sub(r'http\S+', '', text)
|
60 |
+
return text
|
61 |
+
|
62 |
+
# Tokenizer function
|
63 |
+
def tokenize(text):
|
64 |
+
"""
|
65 |
+
Parses a string into a list of semantic units (words)
|
66 |
+
Args:
|
67 |
+
text (str): The string that the function will tokenize.
|
68 |
+
Returns:
|
69 |
+
list: tokens parsed out
|
70 |
+
"""
|
71 |
+
# Removing url's
|
72 |
+
pattern = r"http\S+"
|
73 |
+
|
74 |
+
tokens = re.sub(pattern, "", text) # https://www.youtube.com/watch?v=O2onA4r5UaY
|
75 |
+
tokens = re.sub('[^a-zA-Z 0-9]', '', text)
|
76 |
+
tokens = re.sub('[%s]' % re.escape(string.punctuation), '', text) # Remove punctuation
|
77 |
+
tokens = re.sub('\w*\d\w*', '', text) # Remove words containing numbers
|
78 |
+
# tokens = re.sub('@*!*$*', '', text) # Remove @ ! $
|
79 |
+
tokens = tokens.strip(',') # TESTING THIS LINE
|
80 |
+
tokens = tokens.strip('?') # TESTING THIS LINE
|
81 |
+
tokens = tokens.strip('!') # TESTING THIS LINE
|
82 |
+
tokens = tokens.strip("'") # TESTING THIS LINE
|
83 |
+
tokens = tokens.strip(".") # TESTING THIS LINE
|
84 |
+
|
85 |
+
tokens = tokens.lower().split() # Make text lowercase and split it
|
86 |
+
|
87 |
+
return tokens
|
88 |
+
|
89 |
+
def compute_coherence_values(dictionary, corpus, texts, limit, start=2, step=1):
|
90 |
+
coherence_values = []
|
91 |
+
model_list = []
|
92 |
+
for num_topics in range(start, limit, step):
|
93 |
+
model = gensim.models.ldamodel.LdaModel(corpus=corpus,
|
94 |
+
num_topics=num_topics,
|
95 |
+
random_state=100,
|
96 |
+
chunksize=200,
|
97 |
+
passes=10,
|
98 |
+
per_word_topics=True,
|
99 |
+
id2word=id2word)
|
100 |
+
model_list.append(model)
|
101 |
+
coherencemodel = CoherenceModel(model=model, texts=texts, dictionary=dictionary, coherence='c_v')
|
102 |
+
coherence_values.append(coherencemodel.get_coherence())
|
103 |
+
|
104 |
+
return model_list, coherence_values
|
105 |
+
|
106 |
+
def compute_coherence_values2(corpus, dictionary, k, a, b):
|
107 |
+
lda_model = gensim.models.ldamodel.LdaModel(corpus=corpus,
|
108 |
+
id2word=id2word,
|
109 |
+
num_topics=num_topics,
|
110 |
+
random_state=100,
|
111 |
+
chunksize=200,
|
112 |
+
passes=10,
|
113 |
+
alpha=a,
|
114 |
+
eta=b,
|
115 |
+
per_word_topics=True)
|
116 |
+
coherence_model_lda = CoherenceModel(model=lda_model, texts=df['lemma_tokens'], dictionary=id2word, coherence='c_v')
|
117 |
+
|
118 |
+
return coherence_model_lda.get_coherence()
|
119 |
+
|
120 |
+
def assignTopic(l):
|
121 |
+
maxTopic = max(l,key=itemgetter(1))[0]
|
122 |
+
return maxTopic
|
123 |
+
|
124 |
+
def get_topic_value(row, i):
|
125 |
+
if len(row) == 1:
|
126 |
+
return row[0][1]
|
127 |
+
else:
|
128 |
+
return row[i][1]
|
129 |
+
|
130 |
+
|
131 |
+
df = pd.DataFrame()
|
132 |
+
|
133 |
+
def dataframeProcessing(dataset):
|
134 |
+
# Opening JSON file
|
135 |
+
f = open('stopwords-tl.json')
|
136 |
+
tlStopwords = json.loads(f.read())
|
137 |
+
stopwords = set(STOPWORDS)
|
138 |
+
stopwords.update(tlStopwords)
|
139 |
+
stopwords.update(['na', 'sa', 'ko', 'ako', 'ng', 'mga', 'ba', 'ka', 'yung', 'lang', 'di', 'mo', 'kasi'])
|
140 |
+
|
141 |
+
df = pd.read_csv('katip-december.csv')
|
142 |
+
df.rename(columns = {'tweet':'original_tweets'}, inplace = True)
|
143 |
+
df = df.apply(lambda row: row[df['language'].isin(['en'])])
|
144 |
+
df.reset_index(inplace=True)
|
145 |
+
|
146 |
+
# Apply the function above and get tweets free of emoji's
|
147 |
+
call_emoji_free = lambda x: give_emoji_free_text(x)
|
148 |
+
|
149 |
+
# Apply `call_emoji_free` which calls the function to remove all emoji's
|
150 |
+
df['emoji_free_tweets'] = df['original_tweets'].apply(call_emoji_free)
|
151 |
+
|
152 |
+
#Create a new column with url free tweets
|
153 |
+
df['url_free_tweets'] = df['emoji_free_tweets'].apply(url_free_text)
|
154 |
+
|
155 |
+
# Load spacy
|
156 |
+
# Make sure to restart the runtime after running installations and libraries tab
|
157 |
+
nlp = spacy.load('en_core_web_lg')
|
158 |
+
|
159 |
+
# Tokenizer
|
160 |
+
tokenizer = Tokenizer(nlp.vocab)
|
161 |
+
|
162 |
+
|
163 |
+
# Custom stopwords
|
164 |
+
custom_stopwords = ['hi','\n','\n\n', '&', ' ', '.', '-', 'got', "it's", 'it’s', "i'm", 'i’m', 'im', 'want', 'like', '$', '@']
|
165 |
+
|
166 |
+
|
167 |
+
# Customize stop words by adding to the default list
|
168 |
+
STOP_WORDS = nlp.Defaults.stop_words.union(custom_stopwords)
|
169 |
+
|
170 |
+
# ALL_STOP_WORDS = spacy + gensim + wordcloud
|
171 |
+
ALL_STOP_WORDS = STOP_WORDS.union(SW).union(stopwords)
|
172 |
+
|
173 |
+
|
174 |
+
tokens = []
|
175 |
+
STOP_WORDS.update(stopwords)
|
176 |
+
|
177 |
+
for doc in tokenizer.pipe(df['url_free_tweets'], batch_size=500):
|
178 |
+
doc_tokens = []
|
179 |
+
for token in doc:
|
180 |
+
if token.text.lower() not in STOP_WORDS:
|
181 |
+
doc_tokens.append(token.text.lower())
|
182 |
+
tokens.append(doc_tokens)
|
183 |
+
|
184 |
+
# Makes tokens column
|
185 |
+
df['tokens'] = tokens
|
186 |
+
|
187 |
+
# Make tokens a string again
|
188 |
+
df['tokens_back_to_text'] = [' '.join(map(str, l)) for l in df['tokens']]
|
189 |
+
|
190 |
+
def get_lemmas(text):
|
191 |
+
'''Used to lemmatize the processed tweets'''
|
192 |
+
lemmas = []
|
193 |
+
|
194 |
+
doc = nlp(text)
|
195 |
+
|
196 |
+
# Something goes here :P
|
197 |
+
for token in doc:
|
198 |
+
if ((token.is_stop == False) and (token.is_punct == False)) and (token.pos_ != 'PRON'):
|
199 |
+
lemmas.append(token.lemma_)
|
200 |
+
|
201 |
+
return lemmas
|
202 |
+
|
203 |
+
df['lemmas'] = df['tokens_back_to_text'].apply(get_lemmas)
|
204 |
+
|
205 |
+
# Make lemmas a string again
|
206 |
+
df['lemmas_back_to_text'] = [' '.join(map(str, l)) for l in df['lemmas']]
|
207 |
+
|
208 |
+
# Apply tokenizer
|
209 |
+
df['lemma_tokens'] = df['lemmas_back_to_text'].apply(tokenize)
|
210 |
+
|
211 |
+
# Create a id2word dictionary
|
212 |
+
id2word = Dictionary(df['lemma_tokens'])
|
213 |
+
|
214 |
+
# Filtering Extremes
|
215 |
+
id2word.filter_extremes(no_below=2, no_above=.99)
|
216 |
+
print(len(id2word))
|
217 |
+
|
218 |
+
# Creating a corpus object
|
219 |
+
corpus = [id2word.doc2bow(d) for d in df['lemma_tokens']]
|
220 |
+
|
221 |
+
lda_model = gensim.models.ldamodel.LdaModel(corpus=corpus,
|
222 |
+
id2word=id2word,
|
223 |
+
num_topics=5,
|
224 |
+
random_state=100,
|
225 |
+
chunksize=200,
|
226 |
+
passes=10,
|
227 |
+
per_word_topics=True)
|
228 |
+
|
229 |
+
pprint(lda_model.print_topics())
|
230 |
+
doc_lda = lda_model[corpus]
|
231 |
+
|
232 |
+
coherence_model_lda = CoherenceModel(model=lda_model, texts=df['lemma_tokens'], dictionary=id2word, coherence='c_v')
|
233 |
+
coherence_lda = coherence_model_lda.get_coherence()
|
234 |
+
|
235 |
+
model_list, coherence_values = compute_coherence_values(dictionary=id2word, corpus=corpus,
|
236 |
+
texts=df['lemma_tokens'],
|
237 |
+
start=2,
|
238 |
+
limit=10,
|
239 |
+
step=1)
|
240 |
+
|
241 |
+
k_max = max(coherence_values)
|
242 |
+
num_topics = coherence_values.index(k_max) + 2
|
243 |
+
|
244 |
+
lda_model = gensim.models.ldamodel.LdaModel(corpus=corpus,
|
245 |
+
id2word=id2word,
|
246 |
+
num_topics=num_topics,
|
247 |
+
random_state=100,
|
248 |
+
chunksize=200,
|
249 |
+
passes=10,
|
250 |
+
per_word_topics=True)
|
251 |
+
|
252 |
+
grid = {}
|
253 |
+
grid['Validation_Set'] = {}
|
254 |
+
|
255 |
+
alpha = [0.05, 0.1, 0.5, 1, 5, 10]
|
256 |
+
|
257 |
+
beta = [0.05, 0.1, 0.5, 1, 5, 10]
|
258 |
+
|
259 |
+
num_of_docs = len(corpus)
|
260 |
+
corpus_sets = [gensim.utils.ClippedCorpus(corpus, int(num_of_docs*0.75)),
|
261 |
+
corpus]
|
262 |
+
corpus_title = ['75% Corpus', '100% Corpus']
|
263 |
+
model_results = {'Validation_Set': [],
|
264 |
+
'Alpha': [],
|
265 |
+
'Beta': [],
|
266 |
+
'Coherence': []
|
267 |
+
}
|
268 |
+
if 1 == 1:
|
269 |
+
pbar = tqdm.tqdm(total=540)
|
270 |
+
|
271 |
+
for i in range(len(corpus_sets)):
|
272 |
+
for a in alpha:
|
273 |
+
for b in beta:
|
274 |
+
cv = compute_coherence_values2(corpus=corpus_sets[i], dictionary=id2word, k=num_topics, a=a, b=b)
|
275 |
+
model_results['Validation_Set'].append(corpus_title[i])
|
276 |
+
model_results['Alpha'].append(a)
|
277 |
+
model_results['Beta'].append(b)
|
278 |
+
model_results['Coherence'].append(cv)
|
279 |
+
|
280 |
+
pbar.update(1)
|
281 |
+
pd.DataFrame(model_results).to_csv('lda_tuning_results_new.csv', index=False)
|
282 |
+
pbar.close()
|
283 |
+
|
284 |
+
params_df = pd.read_csv('lda_tuning_results_new.csv')
|
285 |
+
params_df = params_df[params_df.Validation_Set == '100% Corpus']
|
286 |
+
params_df.reset_index(inplace=True)
|
287 |
+
|
288 |
+
max_params = params_df.loc[params_df['Coherence'].idxmax()]
|
289 |
+
max_coherence = max_params['Coherence']
|
290 |
+
max_alpha = max_params['Alpha']
|
291 |
+
max_beta = max_params['Beta']
|
292 |
+
|
293 |
+
lda_model_final = gensim.models.ldamodel.LdaModel(corpus=corpus,
|
294 |
+
id2word=id2word,
|
295 |
+
num_topics=7,
|
296 |
+
random_state=100,
|
297 |
+
chunksize=200,
|
298 |
+
passes=10,
|
299 |
+
alpha=max_alpha,
|
300 |
+
eta=max_beta,
|
301 |
+
per_word_topics=True)
|
302 |
+
|
303 |
+
coherence_model_lda = CoherenceModel(model=lda_model_final, texts=df['lemma_tokens'], dictionary=id2word,
|
304 |
+
coherence='c_v')
|
305 |
+
coherence_lda = coherence_model_lda.get_coherence()
|
306 |
+
|
307 |
+
lda_topics = lda_model_final.show_topics(num_words=10)
|
308 |
+
|
309 |
+
topics = []
|
310 |
+
filters = [lambda x: x.lower(), strip_punctuation, strip_numeric]
|
311 |
+
|
312 |
+
for topic in lda_topics:
|
313 |
+
print(topic)
|
314 |
+
topics.append(preprocess_string(topic[1], filters))
|
315 |
+
|
316 |
+
df['topic'] = [sorted(lda_model_final[corpus][text][0]) for text in range(len(df['original_tweets']))]
|
317 |
+
|
318 |
+
df = df[df['topic'].map(lambda d: len(d)) > 0]
|
319 |
+
df['topic'][0]
|
320 |
+
|
321 |
+
df['max_topic'] = df['topic'].map(lambda row: assignTopic(row))
|
322 |
+
|
323 |
+
topic_clusters = []
|
324 |
+
for i in range(num_topics):
|
325 |
+
topic_clusters.append(df[df['max_topic'].isin(([i]))])
|
326 |
+
topic_clusters[i] = topic_clusters[i]['original_tweets'].tolist()
|
327 |
+
|
328 |
+
for i in range(len(topic_clusters)):
|
329 |
+
tweets = df.loc[df['max_topic'] == i]
|
330 |
+
tweets['topic'] = tweets['topic'].apply(lambda x: get_topic_value(x, i))
|
331 |
+
# tweets['topic'] = [row[i][1] for row in tweets['topic']]
|
332 |
+
tweets_sorted = tweets.sort_values('topic', ascending=False)
|
333 |
+
tweets_sorted.drop_duplicates(subset=['original_tweets'])
|
334 |
+
rep_tweets = tweets_sorted['original_tweets']
|
335 |
+
rep_tweets = [*set(rep_tweets)]
|
336 |
+
print('Topic ', i)
|
337 |
+
print(rep_tweets[:5])
|
338 |
+
|
339 |
+
return df
|
340 |
+
|
341 |
def greet(name):
|
342 |
return "Hello " + name + "!!"
|
343 |
|
344 |
+
iface = gr.Interface(fn=dataframeProcessing, outputs=gr.Dataframe(headers=['original_tweets', 'max_topic']))
|
345 |
iface.launch()
|
katip-december.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
emoji==1.7.0
|
2 |
+
pandas-profiling==2.*
|
3 |
+
plotly==4.*
|
4 |
+
spacy>=3.0.0,<4.0.0
|
5 |
+
en_core_web_lg @ https://github.com/explosion/spacy-models/releases/download/en_core_web_lg-3.5.0/en_core_web_lg-3.5.0-py3-none-any.whl
|
6 |
+
pyldavis
|
7 |
+
gensim
|
8 |
+
chart_studio
|
9 |
+
autopep8
|
10 |
+
transformers
|
11 |
+
sentencepiece
|
12 |
+
bert-extractive-summarizer
|
13 |
+
tqdm
|
stopwords-tl.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
["akin","aking","ako","alin","am","amin","aming","ang","ano","anumang","apat","at","atin","ating","ay","bababa","bago","bakit","bawat","bilang","dahil","dalawa","dapat","din","dito","doon","gagawin","gayunman","ginagawa","ginawa","ginawang","gumawa","gusto","habang","hanggang","hindi","huwag","iba","ibaba","ibabaw","ibig","ikaw","ilagay","ilalim","ilan","inyong","isa","isang","itaas","ito","iyo","iyon","iyong","ka","kahit","kailangan","kailanman","kami","kanila","kanilang","kanino","kanya","kanyang","kapag","kapwa","karamihan","katiyakan","katulad","kaya","kaysa","ko","kong","kulang","kumuha","kung","laban","lahat","lamang","likod","lima","maaari","maaaring","maging","mahusay","makita","marami","marapat","masyado","may","mayroon","mga","minsan","mismo","mula","muli","na","nabanggit","naging","nagkaroon","nais","nakita","namin","napaka","narito","nasaan","ng","ngayon","ni","nila","nilang","nito","niya","niyang","noon","o","pa","paano","pababa","paggawa","pagitan","pagkakaroon","pagkatapos","palabas","pamamagitan","panahon","pangalawa","para","paraan","pareho","pataas","pero","pumunta","pumupunta","sa","saan","sabi","sabihin","sarili","sila","sino","siya","tatlo","tayo","tulad","tungkol","una","walang"]
|