from ctransformers import AutoModelForCausalLM from fastapi import FastAPI from pydantic import BaseModel llm = AutoModelForCausalLM.from_pretrained("TowerInstruct-7B-v0.2.Q8_0.gguf", max_new_tokens = 2084, threads = 3, ) #Pydantic object class validation(BaseModel): prompt: str #Fast API app = FastAPI() # <|im_start|>user # Translate the following text from Portuguese into English. # Portuguese: Um grupo de investigadores lançou um novo modelo para tarefas relacionadas com tradução. # English:<|im_end|> # <|im_start|>assistant @app.post("/translate") async def stream(item: validation): translation_prompt = 'Below is an instruction that describes a task. Write a response that appropriately completes the request.' S_INST = "<|im_start|>" E_INST = "<|im_end|>" user, assistant = "user", "assistant" prompt = f"{S_INST}{user}\n{translation_prompt}\nChinese:{item.prompt}\nEnglish:{E_INST}\n{S_INST}{assistant}\n" return llm(prompt)