Spaces:
Running
Running
Upload 31 files
Browse files- README.md +7 -9
- app.py +906 -0
- assets/images/logo.png +0 -0
- assets/pretrained_models/79999_iter.pth +3 -0
- assets/pretrained_models/GFPGANv1.4.pth +3 -0
- assets/pretrained_models/RealESRGAN_x2.pth +3 -0
- assets/pretrained_models/RealESRGAN_x4.pth +3 -0
- assets/pretrained_models/RealESRGAN_x8.pth +3 -0
- assets/pretrained_models/codeformer.onnx +3 -0
- assets/pretrained_models/inswapper_128.onnx +3 -0
- assets/pretrained_models/open-nsfw.onnx +3 -0
- assets/pretrained_models/readme.md +4 -0
- face_analyser.py +194 -0
- face_enhancer.py +72 -0
- face_parsing/__init__.py +3 -0
- face_parsing/model.py +283 -0
- face_parsing/parse_mask.py +107 -0
- face_parsing/resnet.py +109 -0
- face_parsing/swap.py +133 -0
- face_swapper.py +150 -0
- gfpgan/weights/detection_Resnet50_Final.pth +3 -0
- gfpgan/weights/parsing_parsenet.pth +3 -0
- requirements.txt +21 -0
- upscaler/RealESRGAN/__init__.py +1 -0
- upscaler/RealESRGAN/arch_utils.py +197 -0
- upscaler/RealESRGAN/model.py +90 -0
- upscaler/RealESRGAN/rrdbnet_arch.py +121 -0
- upscaler/RealESRGAN/utils.py +133 -0
- upscaler/__init__.py +0 -0
- upscaler/codeformer.py +37 -0
- utils.py +303 -0
README.md
CHANGED
@@ -1,13 +1,11 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
10 |
-
license:
|
11 |
-
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Face-Swap BypassNSFW
|
3 |
+
emoji: 🔥
|
4 |
+
colorFrom: red
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.35.2
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
+
license: apache-2.0
|
11 |
+
---
|
|
|
|
app.py
ADDED
@@ -0,0 +1,906 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import glob
|
4 |
+
import time
|
5 |
+
import torch
|
6 |
+
import shutil
|
7 |
+
import argparse
|
8 |
+
import platform
|
9 |
+
import datetime
|
10 |
+
import subprocess
|
11 |
+
import insightface
|
12 |
+
import onnxruntime
|
13 |
+
import numpy as np
|
14 |
+
import gradio as gr
|
15 |
+
import threading
|
16 |
+
import queue
|
17 |
+
from tqdm import tqdm
|
18 |
+
import concurrent.futures
|
19 |
+
from moviepy.editor import VideoFileClip
|
20 |
+
|
21 |
+
from face_swapper import Inswapper, paste_to_whole
|
22 |
+
from face_analyser import detect_conditions, get_analysed_data, swap_options_list
|
23 |
+
from face_parsing import init_parsing_model, get_parsed_mask, mask_regions, mask_regions_to_list
|
24 |
+
from face_enhancer import get_available_enhancer_names, load_face_enhancer_model, cv2_interpolations
|
25 |
+
from utils import trim_video, StreamerThread, ProcessBar, open_directory, split_list_by_lengths, merge_img_sequence_from_ref, create_image_grid
|
26 |
+
|
27 |
+
## ------------------------------ USER ARGS ------------------------------
|
28 |
+
|
29 |
+
parser = argparse.ArgumentParser(description="Swap-Mukham Face Swapper")
|
30 |
+
parser.add_argument("--out_dir", help="Default Output directory", default=os.getcwd())
|
31 |
+
parser.add_argument("--batch_size", help="Gpu batch size", default=32)
|
32 |
+
parser.add_argument("--cuda", action="store_true", help="Enable cuda", default=False)
|
33 |
+
parser.add_argument(
|
34 |
+
"--colab", action="store_true", help="Enable colab mode", default=False
|
35 |
+
)
|
36 |
+
user_args = parser.parse_args()
|
37 |
+
|
38 |
+
## ------------------------------ DEFAULTS ------------------------------
|
39 |
+
|
40 |
+
USE_COLAB = user_args.colab
|
41 |
+
USE_CUDA = user_args.cuda
|
42 |
+
DEF_OUTPUT_PATH = user_args.out_dir
|
43 |
+
BATCH_SIZE = int(user_args.batch_size)
|
44 |
+
WORKSPACE = None
|
45 |
+
OUTPUT_FILE = None
|
46 |
+
CURRENT_FRAME = None
|
47 |
+
STREAMER = None
|
48 |
+
DETECT_CONDITION = "best detection"
|
49 |
+
DETECT_SIZE = 640
|
50 |
+
DETECT_THRESH = 0.6
|
51 |
+
NUM_OF_SRC_SPECIFIC = 10
|
52 |
+
MASK_INCLUDE = [
|
53 |
+
"Skin",
|
54 |
+
"R-Eyebrow",
|
55 |
+
"L-Eyebrow",
|
56 |
+
"L-Eye",
|
57 |
+
"R-Eye",
|
58 |
+
"Nose",
|
59 |
+
"Mouth",
|
60 |
+
"L-Lip",
|
61 |
+
"U-Lip"
|
62 |
+
]
|
63 |
+
MASK_SOFT_KERNEL = 17
|
64 |
+
MASK_SOFT_ITERATIONS = 10
|
65 |
+
MASK_BLUR_AMOUNT = 0.1
|
66 |
+
MASK_ERODE_AMOUNT = 0.15
|
67 |
+
|
68 |
+
FACE_SWAPPER = None
|
69 |
+
FACE_ANALYSER = None
|
70 |
+
FACE_ENHANCER = None
|
71 |
+
FACE_PARSER = None
|
72 |
+
FACE_ENHANCER_LIST = ["NONE"]
|
73 |
+
FACE_ENHANCER_LIST.extend(get_available_enhancer_names())
|
74 |
+
FACE_ENHANCER_LIST.extend(cv2_interpolations)
|
75 |
+
|
76 |
+
## ------------------------------ SET EXECUTION PROVIDER ------------------------------
|
77 |
+
# Note: Non CUDA users may change settings here
|
78 |
+
|
79 |
+
PROVIDER = ["CPUExecutionProvider"]
|
80 |
+
|
81 |
+
if USE_CUDA:
|
82 |
+
available_providers = onnxruntime.get_available_providers()
|
83 |
+
if "CUDAExecutionProvider" in available_providers:
|
84 |
+
print("\n********** Running on CUDA **********\n")
|
85 |
+
PROVIDER = ["CUDAExecutionProvider", "CPUExecutionProvider"]
|
86 |
+
else:
|
87 |
+
USE_CUDA = False
|
88 |
+
print("\n********** CUDA unavailable running on CPU **********\n")
|
89 |
+
else:
|
90 |
+
USE_CUDA = False
|
91 |
+
print("\n********** Running on CPU **********\n")
|
92 |
+
|
93 |
+
device = "cuda" if USE_CUDA else "cpu"
|
94 |
+
EMPTY_CACHE = lambda: torch.cuda.empty_cache() if device == "cuda" else None
|
95 |
+
|
96 |
+
## ------------------------------ LOAD MODELS ------------------------------
|
97 |
+
|
98 |
+
def load_face_analyser_model(name="buffalo_l"):
|
99 |
+
global FACE_ANALYSER
|
100 |
+
if FACE_ANALYSER is None:
|
101 |
+
FACE_ANALYSER = insightface.app.FaceAnalysis(name=name, providers=PROVIDER)
|
102 |
+
FACE_ANALYSER.prepare(
|
103 |
+
ctx_id=0, det_size=(DETECT_SIZE, DETECT_SIZE), det_thresh=DETECT_THRESH
|
104 |
+
)
|
105 |
+
|
106 |
+
|
107 |
+
def load_face_swapper_model(path="./assets/pretrained_models/inswapper_128.onnx"):
|
108 |
+
global FACE_SWAPPER
|
109 |
+
if FACE_SWAPPER is None:
|
110 |
+
batch = int(BATCH_SIZE) if device == "cuda" else 1
|
111 |
+
FACE_SWAPPER = Inswapper(model_file=path, batch_size=batch, providers=PROVIDER)
|
112 |
+
|
113 |
+
|
114 |
+
def load_face_parser_model(path="./assets/pretrained_models/79999_iter.pth"):
|
115 |
+
global FACE_PARSER
|
116 |
+
if FACE_PARSER is None:
|
117 |
+
FACE_PARSER = init_parsing_model(path, device=device)
|
118 |
+
|
119 |
+
|
120 |
+
load_face_analyser_model()
|
121 |
+
load_face_swapper_model()
|
122 |
+
|
123 |
+
## ------------------------------ MAIN PROCESS ------------------------------
|
124 |
+
|
125 |
+
|
126 |
+
def process(
|
127 |
+
input_type,
|
128 |
+
image_path,
|
129 |
+
video_path,
|
130 |
+
directory_path,
|
131 |
+
source_path,
|
132 |
+
output_path,
|
133 |
+
output_name,
|
134 |
+
keep_output_sequence,
|
135 |
+
condition,
|
136 |
+
age,
|
137 |
+
distance,
|
138 |
+
face_enhancer_name,
|
139 |
+
enable_face_parser,
|
140 |
+
mask_includes,
|
141 |
+
mask_soft_kernel,
|
142 |
+
mask_soft_iterations,
|
143 |
+
blur_amount,
|
144 |
+
erode_amount,
|
145 |
+
face_scale,
|
146 |
+
enable_laplacian_blend,
|
147 |
+
crop_top,
|
148 |
+
crop_bott,
|
149 |
+
crop_left,
|
150 |
+
crop_right,
|
151 |
+
*specifics,
|
152 |
+
):
|
153 |
+
global WORKSPACE
|
154 |
+
global OUTPUT_FILE
|
155 |
+
global PREVIEW
|
156 |
+
WORKSPACE, OUTPUT_FILE, PREVIEW = None, None, None
|
157 |
+
|
158 |
+
## ------------------------------ GUI UPDATE FUNC ------------------------------
|
159 |
+
|
160 |
+
def ui_before():
|
161 |
+
return (
|
162 |
+
gr.update(visible=True, value=PREVIEW),
|
163 |
+
gr.update(interactive=False),
|
164 |
+
gr.update(interactive=False),
|
165 |
+
gr.update(visible=False),
|
166 |
+
)
|
167 |
+
|
168 |
+
def ui_after():
|
169 |
+
return (
|
170 |
+
gr.update(visible=True, value=PREVIEW),
|
171 |
+
gr.update(interactive=True),
|
172 |
+
gr.update(interactive=True),
|
173 |
+
gr.update(visible=False),
|
174 |
+
)
|
175 |
+
|
176 |
+
def ui_after_vid():
|
177 |
+
return (
|
178 |
+
gr.update(visible=False),
|
179 |
+
gr.update(interactive=True),
|
180 |
+
gr.update(interactive=True),
|
181 |
+
gr.update(value=OUTPUT_FILE, visible=True),
|
182 |
+
)
|
183 |
+
|
184 |
+
start_time = time.time()
|
185 |
+
total_exec_time = lambda start_time: divmod(time.time() - start_time, 60)
|
186 |
+
get_finsh_text = lambda start_time: f"✔️ Completed in {int(total_exec_time(start_time)[0])} min {int(total_exec_time(start_time)[1])} sec."
|
187 |
+
|
188 |
+
## ------------------------------ PREPARE INPUTS & LOAD MODELS ------------------------------
|
189 |
+
|
190 |
+
|
191 |
+
|
192 |
+
yield "### \n ⌛ Loading face analyser model...", *ui_before()
|
193 |
+
load_face_analyser_model()
|
194 |
+
|
195 |
+
yield "### \n ⌛ Loading face swapper model...", *ui_before()
|
196 |
+
load_face_swapper_model()
|
197 |
+
|
198 |
+
if face_enhancer_name != "NONE":
|
199 |
+
if face_enhancer_name not in cv2_interpolations:
|
200 |
+
yield f"### \n ⌛ Loading {face_enhancer_name} model...", *ui_before()
|
201 |
+
FACE_ENHANCER = load_face_enhancer_model(name=face_enhancer_name, device=device)
|
202 |
+
else:
|
203 |
+
FACE_ENHANCER = None
|
204 |
+
|
205 |
+
if enable_face_parser:
|
206 |
+
yield "### \n ⌛ Loading face parsing model...", *ui_before()
|
207 |
+
load_face_parser_model()
|
208 |
+
|
209 |
+
includes = mask_regions_to_list(mask_includes)
|
210 |
+
specifics = list(specifics)
|
211 |
+
half = len(specifics) // 2
|
212 |
+
sources = specifics[:half]
|
213 |
+
specifics = specifics[half:]
|
214 |
+
if crop_top > crop_bott:
|
215 |
+
crop_top, crop_bott = crop_bott, crop_top
|
216 |
+
if crop_left > crop_right:
|
217 |
+
crop_left, crop_right = crop_right, crop_left
|
218 |
+
crop_mask = (crop_top, 511-crop_bott, crop_left, 511-crop_right)
|
219 |
+
|
220 |
+
def swap_process(image_sequence):
|
221 |
+
## ------------------------------ CONTENT CHECK ------------------------------
|
222 |
+
|
223 |
+
|
224 |
+
yield "### \n ⌛ Analysing face data...", *ui_before()
|
225 |
+
if condition != "Specific Face":
|
226 |
+
source_data = source_path, age
|
227 |
+
else:
|
228 |
+
source_data = ((sources, specifics), distance)
|
229 |
+
analysed_targets, analysed_sources, whole_frame_list, num_faces_per_frame = get_analysed_data(
|
230 |
+
FACE_ANALYSER,
|
231 |
+
image_sequence,
|
232 |
+
source_data,
|
233 |
+
swap_condition=condition,
|
234 |
+
detect_condition=DETECT_CONDITION,
|
235 |
+
scale=face_scale
|
236 |
+
)
|
237 |
+
|
238 |
+
## ------------------------------ SWAP FUNC ------------------------------
|
239 |
+
|
240 |
+
yield "### \n ⌛ Generating faces...", *ui_before()
|
241 |
+
preds = []
|
242 |
+
matrs = []
|
243 |
+
count = 0
|
244 |
+
global PREVIEW
|
245 |
+
for batch_pred, batch_matr in FACE_SWAPPER.batch_forward(whole_frame_list, analysed_targets, analysed_sources):
|
246 |
+
preds.extend(batch_pred)
|
247 |
+
matrs.extend(batch_matr)
|
248 |
+
EMPTY_CACHE()
|
249 |
+
count += 1
|
250 |
+
|
251 |
+
if USE_CUDA:
|
252 |
+
image_grid = create_image_grid(batch_pred, size=128)
|
253 |
+
PREVIEW = image_grid[:, :, ::-1]
|
254 |
+
yield f"### \n ⌛ Generating face Batch {count}", *ui_before()
|
255 |
+
|
256 |
+
## ------------------------------ FACE ENHANCEMENT ------------------------------
|
257 |
+
|
258 |
+
generated_len = len(preds)
|
259 |
+
if face_enhancer_name != "NONE":
|
260 |
+
yield f"### \n ⌛ Upscaling faces with {face_enhancer_name}...", *ui_before()
|
261 |
+
for idx, pred in tqdm(enumerate(preds), total=generated_len, desc=f"Upscaling with {face_enhancer_name}"):
|
262 |
+
enhancer_model, enhancer_model_runner = FACE_ENHANCER
|
263 |
+
pred = enhancer_model_runner(pred, enhancer_model)
|
264 |
+
preds[idx] = cv2.resize(pred, (512,512))
|
265 |
+
EMPTY_CACHE()
|
266 |
+
|
267 |
+
## ------------------------------ FACE PARSING ------------------------------
|
268 |
+
|
269 |
+
if enable_face_parser:
|
270 |
+
yield "### \n ⌛ Face-parsing mask...", *ui_before()
|
271 |
+
masks = []
|
272 |
+
count = 0
|
273 |
+
for batch_mask in get_parsed_mask(FACE_PARSER, preds, classes=includes, device=device, batch_size=BATCH_SIZE, softness=int(mask_soft_iterations)):
|
274 |
+
masks.append(batch_mask)
|
275 |
+
EMPTY_CACHE()
|
276 |
+
count += 1
|
277 |
+
|
278 |
+
if len(batch_mask) > 1:
|
279 |
+
image_grid = create_image_grid(batch_mask, size=128)
|
280 |
+
PREVIEW = image_grid[:, :, ::-1]
|
281 |
+
yield f"### \n ⌛ Face parsing Batch {count}", *ui_before()
|
282 |
+
masks = np.concatenate(masks, axis=0) if len(masks) >= 1 else masks
|
283 |
+
else:
|
284 |
+
masks = [None] * generated_len
|
285 |
+
|
286 |
+
## ------------------------------ SPLIT LIST ------------------------------
|
287 |
+
|
288 |
+
split_preds = split_list_by_lengths(preds, num_faces_per_frame)
|
289 |
+
del preds
|
290 |
+
split_matrs = split_list_by_lengths(matrs, num_faces_per_frame)
|
291 |
+
del matrs
|
292 |
+
split_masks = split_list_by_lengths(masks, num_faces_per_frame)
|
293 |
+
del masks
|
294 |
+
|
295 |
+
## ------------------------------ PASTE-BACK ------------------------------
|
296 |
+
|
297 |
+
yield "### \n ⌛ Pasting back...", *ui_before()
|
298 |
+
def post_process(frame_idx, frame_img, split_preds, split_matrs, split_masks, enable_laplacian_blend, crop_mask, blur_amount, erode_amount):
|
299 |
+
whole_img_path = frame_img
|
300 |
+
whole_img = cv2.imread(whole_img_path)
|
301 |
+
blend_method = 'laplacian' if enable_laplacian_blend else 'linear'
|
302 |
+
for p, m, mask in zip(split_preds[frame_idx], split_matrs[frame_idx], split_masks[frame_idx]):
|
303 |
+
p = cv2.resize(p, (512,512))
|
304 |
+
mask = cv2.resize(mask, (512,512)) if mask is not None else None
|
305 |
+
m /= 0.25
|
306 |
+
whole_img = paste_to_whole(p, whole_img, m, mask=mask, crop_mask=crop_mask, blend_method=blend_method, blur_amount=blur_amount, erode_amount=erode_amount)
|
307 |
+
cv2.imwrite(whole_img_path, whole_img)
|
308 |
+
|
309 |
+
def concurrent_post_process(image_sequence, *args):
|
310 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
311 |
+
futures = []
|
312 |
+
for idx, frame_img in enumerate(image_sequence):
|
313 |
+
future = executor.submit(post_process, idx, frame_img, *args)
|
314 |
+
futures.append(future)
|
315 |
+
|
316 |
+
for future in tqdm(concurrent.futures.as_completed(futures), total=len(futures), desc="Pasting back"):
|
317 |
+
result = future.result()
|
318 |
+
|
319 |
+
concurrent_post_process(
|
320 |
+
image_sequence,
|
321 |
+
split_preds,
|
322 |
+
split_matrs,
|
323 |
+
split_masks,
|
324 |
+
enable_laplacian_blend,
|
325 |
+
crop_mask,
|
326 |
+
blur_amount,
|
327 |
+
erode_amount
|
328 |
+
)
|
329 |
+
|
330 |
+
|
331 |
+
## ------------------------------ IMAGE ------------------------------
|
332 |
+
|
333 |
+
if input_type == "Image":
|
334 |
+
target = cv2.imread(image_path)
|
335 |
+
output_file = os.path.join(output_path, output_name + ".png")
|
336 |
+
cv2.imwrite(output_file, target)
|
337 |
+
|
338 |
+
for info_update in swap_process([output_file]):
|
339 |
+
yield info_update
|
340 |
+
|
341 |
+
OUTPUT_FILE = output_file
|
342 |
+
WORKSPACE = output_path
|
343 |
+
PREVIEW = cv2.imread(output_file)[:, :, ::-1]
|
344 |
+
|
345 |
+
yield get_finsh_text(start_time), *ui_after()
|
346 |
+
|
347 |
+
## ------------------------------ VIDEO ------------------------------
|
348 |
+
|
349 |
+
elif input_type == "Video":
|
350 |
+
temp_path = os.path.join(output_path, output_name, "sequence")
|
351 |
+
os.makedirs(temp_path, exist_ok=True)
|
352 |
+
|
353 |
+
yield "### \n ⌛ Extracting video frames...", *ui_before()
|
354 |
+
image_sequence = []
|
355 |
+
cap = cv2.VideoCapture(video_path)
|
356 |
+
curr_idx = 0
|
357 |
+
while True:
|
358 |
+
ret, frame = cap.read()
|
359 |
+
if not ret:break
|
360 |
+
frame_path = os.path.join(temp_path, f"frame_{curr_idx}.jpg")
|
361 |
+
cv2.imwrite(frame_path, frame)
|
362 |
+
image_sequence.append(frame_path)
|
363 |
+
curr_idx += 1
|
364 |
+
cap.release()
|
365 |
+
cv2.destroyAllWindows()
|
366 |
+
|
367 |
+
for info_update in swap_process(image_sequence):
|
368 |
+
yield info_update
|
369 |
+
|
370 |
+
yield "### \n ⌛ Merging sequence...", *ui_before()
|
371 |
+
output_video_path = os.path.join(output_path, output_name + ".mp4")
|
372 |
+
merge_img_sequence_from_ref(video_path, image_sequence, output_video_path)
|
373 |
+
|
374 |
+
if os.path.exists(temp_path) and not keep_output_sequence:
|
375 |
+
yield "### \n ⌛ Removing temporary files...", *ui_before()
|
376 |
+
shutil.rmtree(temp_path)
|
377 |
+
|
378 |
+
WORKSPACE = output_path
|
379 |
+
OUTPUT_FILE = output_video_path
|
380 |
+
|
381 |
+
yield get_finsh_text(start_time), *ui_after_vid()
|
382 |
+
|
383 |
+
## ------------------------------ DIRECTORY ------------------------------
|
384 |
+
|
385 |
+
elif input_type == "Directory":
|
386 |
+
extensions = ["jpg", "jpeg", "png", "bmp", "tiff", "ico", "webp"]
|
387 |
+
temp_path = os.path.join(output_path, output_name)
|
388 |
+
if os.path.exists(temp_path):
|
389 |
+
shutil.rmtree(temp_path)
|
390 |
+
os.mkdir(temp_path)
|
391 |
+
|
392 |
+
file_paths =[]
|
393 |
+
for file_path in glob.glob(os.path.join(directory_path, "*")):
|
394 |
+
if any(file_path.lower().endswith(ext) for ext in extensions):
|
395 |
+
img = cv2.imread(file_path)
|
396 |
+
new_file_path = os.path.join(temp_path, os.path.basename(file_path))
|
397 |
+
cv2.imwrite(new_file_path, img)
|
398 |
+
file_paths.append(new_file_path)
|
399 |
+
|
400 |
+
for info_update in swap_process(file_paths):
|
401 |
+
yield info_update
|
402 |
+
|
403 |
+
PREVIEW = cv2.imread(file_paths[-1])[:, :, ::-1]
|
404 |
+
WORKSPACE = temp_path
|
405 |
+
OUTPUT_FILE = file_paths[-1]
|
406 |
+
|
407 |
+
yield get_finsh_text(start_time), *ui_after()
|
408 |
+
|
409 |
+
## ------------------------------ STREAM ------------------------------
|
410 |
+
|
411 |
+
elif input_type == "Stream":
|
412 |
+
pass
|
413 |
+
|
414 |
+
|
415 |
+
## ------------------------------ GRADIO FUNC ------------------------------
|
416 |
+
|
417 |
+
|
418 |
+
def update_radio(value):
|
419 |
+
if value == "Image":
|
420 |
+
return (
|
421 |
+
gr.update(visible=True),
|
422 |
+
gr.update(visible=False),
|
423 |
+
gr.update(visible=False),
|
424 |
+
)
|
425 |
+
elif value == "Video":
|
426 |
+
return (
|
427 |
+
gr.update(visible=False),
|
428 |
+
gr.update(visible=True),
|
429 |
+
gr.update(visible=False),
|
430 |
+
)
|
431 |
+
elif value == "Directory":
|
432 |
+
return (
|
433 |
+
gr.update(visible=False),
|
434 |
+
gr.update(visible=False),
|
435 |
+
gr.update(visible=True),
|
436 |
+
)
|
437 |
+
elif value == "Stream":
|
438 |
+
return (
|
439 |
+
gr.update(visible=False),
|
440 |
+
gr.update(visible=False),
|
441 |
+
gr.update(visible=True),
|
442 |
+
)
|
443 |
+
|
444 |
+
|
445 |
+
def swap_option_changed(value):
|
446 |
+
if value.startswith("Age"):
|
447 |
+
return (
|
448 |
+
gr.update(visible=True),
|
449 |
+
gr.update(visible=False),
|
450 |
+
gr.update(visible=True),
|
451 |
+
)
|
452 |
+
elif value == "Specific Face":
|
453 |
+
return (
|
454 |
+
gr.update(visible=False),
|
455 |
+
gr.update(visible=True),
|
456 |
+
gr.update(visible=False),
|
457 |
+
)
|
458 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
459 |
+
|
460 |
+
|
461 |
+
def video_changed(video_path):
|
462 |
+
sliders_update = gr.Slider.update
|
463 |
+
button_update = gr.Button.update
|
464 |
+
number_update = gr.Number.update
|
465 |
+
|
466 |
+
if video_path is None:
|
467 |
+
return (
|
468 |
+
sliders_update(minimum=0, maximum=0, value=0),
|
469 |
+
sliders_update(minimum=1, maximum=1, value=1),
|
470 |
+
number_update(value=1),
|
471 |
+
)
|
472 |
+
try:
|
473 |
+
clip = VideoFileClip(video_path)
|
474 |
+
fps = clip.fps
|
475 |
+
total_frames = clip.reader.nframes
|
476 |
+
clip.close()
|
477 |
+
return (
|
478 |
+
sliders_update(minimum=0, maximum=total_frames, value=0, interactive=True),
|
479 |
+
sliders_update(
|
480 |
+
minimum=0, maximum=total_frames, value=total_frames, interactive=True
|
481 |
+
),
|
482 |
+
number_update(value=fps),
|
483 |
+
)
|
484 |
+
except:
|
485 |
+
return (
|
486 |
+
sliders_update(value=0),
|
487 |
+
sliders_update(value=0),
|
488 |
+
number_update(value=1),
|
489 |
+
)
|
490 |
+
|
491 |
+
|
492 |
+
def analyse_settings_changed(detect_condition, detection_size, detection_threshold):
|
493 |
+
yield "### \n ⌛ Applying new values..."
|
494 |
+
global FACE_ANALYSER
|
495 |
+
global DETECT_CONDITION
|
496 |
+
DETECT_CONDITION = detect_condition
|
497 |
+
FACE_ANALYSER = insightface.app.FaceAnalysis(name="buffalo_l", providers=PROVIDER)
|
498 |
+
FACE_ANALYSER.prepare(
|
499 |
+
ctx_id=0,
|
500 |
+
det_size=(int(detection_size), int(detection_size)),
|
501 |
+
det_thresh=float(detection_threshold),
|
502 |
+
)
|
503 |
+
yield f"### \n ✔️ Applied detect condition:{detect_condition}, detection size: {detection_size}, detection threshold: {detection_threshold}"
|
504 |
+
|
505 |
+
|
506 |
+
def stop_running():
|
507 |
+
global STREAMER
|
508 |
+
if hasattr(STREAMER, "stop"):
|
509 |
+
STREAMER.stop()
|
510 |
+
STREAMER = None
|
511 |
+
return "Cancelled"
|
512 |
+
|
513 |
+
|
514 |
+
def slider_changed(show_frame, video_path, frame_index):
|
515 |
+
if not show_frame:
|
516 |
+
return None, None
|
517 |
+
if video_path is None:
|
518 |
+
return None, None
|
519 |
+
clip = VideoFileClip(video_path)
|
520 |
+
frame = clip.get_frame(frame_index / clip.fps)
|
521 |
+
frame_array = np.array(frame)
|
522 |
+
clip.close()
|
523 |
+
return gr.Image.update(value=frame_array, visible=True), gr.Video.update(
|
524 |
+
visible=False
|
525 |
+
)
|
526 |
+
|
527 |
+
|
528 |
+
def trim_and_reload(video_path, output_path, output_name, start_frame, stop_frame):
|
529 |
+
yield video_path, f"### \n ⌛ Trimming video frame {start_frame} to {stop_frame}..."
|
530 |
+
try:
|
531 |
+
output_path = os.path.join(output_path, output_name)
|
532 |
+
trimmed_video = trim_video(video_path, output_path, start_frame, stop_frame)
|
533 |
+
yield trimmed_video, "### \n ✔️ Video trimmed and reloaded."
|
534 |
+
except Exception as e:
|
535 |
+
print(e)
|
536 |
+
yield video_path, "### \n ❌ Video trimming failed. See console for more info."
|
537 |
+
|
538 |
+
|
539 |
+
## ------------------------------ GRADIO GUI ------------------------------
|
540 |
+
|
541 |
+
css = """
|
542 |
+
footer{display:none !important}
|
543 |
+
"""
|
544 |
+
|
545 |
+
with gr.Blocks(css=css) as interface:
|
546 |
+
gr.Markdown("# 🗿 Swap Mukham")
|
547 |
+
gr.Markdown("### Face swap app based on insightface inswapper.")
|
548 |
+
with gr.Row():
|
549 |
+
with gr.Row():
|
550 |
+
with gr.Column(scale=0.4):
|
551 |
+
with gr.Tab("📄 Swap Condition"):
|
552 |
+
swap_option = gr.Dropdown(
|
553 |
+
swap_options_list,
|
554 |
+
info="Choose which face or faces in the target image to swap.",
|
555 |
+
multiselect=False,
|
556 |
+
show_label=False,
|
557 |
+
value=swap_options_list[0],
|
558 |
+
interactive=True,
|
559 |
+
)
|
560 |
+
age = gr.Number(
|
561 |
+
value=25, label="Value", interactive=True, visible=False
|
562 |
+
)
|
563 |
+
|
564 |
+
with gr.Tab("🎚️ Detection Settings"):
|
565 |
+
detect_condition_dropdown = gr.Dropdown(
|
566 |
+
detect_conditions,
|
567 |
+
label="Condition",
|
568 |
+
value=DETECT_CONDITION,
|
569 |
+
interactive=True,
|
570 |
+
info="This condition is only used when multiple faces are detected on source or specific image.",
|
571 |
+
)
|
572 |
+
detection_size = gr.Number(
|
573 |
+
label="Detection Size", value=DETECT_SIZE, interactive=True
|
574 |
+
)
|
575 |
+
detection_threshold = gr.Number(
|
576 |
+
label="Detection Threshold",
|
577 |
+
value=DETECT_THRESH,
|
578 |
+
interactive=True,
|
579 |
+
)
|
580 |
+
apply_detection_settings = gr.Button("Apply settings")
|
581 |
+
|
582 |
+
with gr.Tab("📤 Output Settings"):
|
583 |
+
output_directory = gr.Text(
|
584 |
+
label="Output Directory",
|
585 |
+
value=DEF_OUTPUT_PATH,
|
586 |
+
interactive=True,
|
587 |
+
)
|
588 |
+
output_name = gr.Text(
|
589 |
+
label="Output Name", value="Result", interactive=True
|
590 |
+
)
|
591 |
+
keep_output_sequence = gr.Checkbox(
|
592 |
+
label="Keep output sequence", value=False, interactive=True
|
593 |
+
)
|
594 |
+
|
595 |
+
with gr.Tab("🪄 Other Settings"):
|
596 |
+
face_scale = gr.Slider(
|
597 |
+
label="Face Scale",
|
598 |
+
minimum=0,
|
599 |
+
maximum=2,
|
600 |
+
value=1,
|
601 |
+
interactive=True,
|
602 |
+
)
|
603 |
+
|
604 |
+
face_enhancer_name = gr.Dropdown(
|
605 |
+
FACE_ENHANCER_LIST, label="Face Enhancer", value="NONE", multiselect=False, interactive=True
|
606 |
+
)
|
607 |
+
|
608 |
+
with gr.Accordion("Advanced Mask", open=False):
|
609 |
+
enable_face_parser_mask = gr.Checkbox(
|
610 |
+
label="Enable Face Parsing",
|
611 |
+
value=False,
|
612 |
+
interactive=True,
|
613 |
+
)
|
614 |
+
|
615 |
+
mask_include = gr.Dropdown(
|
616 |
+
mask_regions.keys(),
|
617 |
+
value=MASK_INCLUDE,
|
618 |
+
multiselect=True,
|
619 |
+
label="Include",
|
620 |
+
interactive=True,
|
621 |
+
)
|
622 |
+
mask_soft_kernel = gr.Number(
|
623 |
+
label="Soft Erode Kernel",
|
624 |
+
value=MASK_SOFT_KERNEL,
|
625 |
+
minimum=3,
|
626 |
+
interactive=True,
|
627 |
+
visible = False
|
628 |
+
)
|
629 |
+
mask_soft_iterations = gr.Number(
|
630 |
+
label="Soft Erode Iterations",
|
631 |
+
value=MASK_SOFT_ITERATIONS,
|
632 |
+
minimum=0,
|
633 |
+
interactive=True,
|
634 |
+
|
635 |
+
)
|
636 |
+
|
637 |
+
|
638 |
+
with gr.Accordion("Crop Mask", open=False):
|
639 |
+
crop_top = gr.Slider(label="Top", minimum=0, maximum=511, value=0, step=1, interactive=True)
|
640 |
+
crop_bott = gr.Slider(label="Bottom", minimum=0, maximum=511, value=511, step=1, interactive=True)
|
641 |
+
crop_left = gr.Slider(label="Left", minimum=0, maximum=511, value=0, step=1, interactive=True)
|
642 |
+
crop_right = gr.Slider(label="Right", minimum=0, maximum=511, value=511, step=1, interactive=True)
|
643 |
+
|
644 |
+
|
645 |
+
erode_amount = gr.Slider(
|
646 |
+
label="Mask Erode",
|
647 |
+
minimum=0,
|
648 |
+
maximum=1,
|
649 |
+
value=MASK_ERODE_AMOUNT,
|
650 |
+
step=0.05,
|
651 |
+
interactive=True,
|
652 |
+
)
|
653 |
+
|
654 |
+
blur_amount = gr.Slider(
|
655 |
+
label="Mask Blur",
|
656 |
+
minimum=0,
|
657 |
+
maximum=1,
|
658 |
+
value=MASK_BLUR_AMOUNT,
|
659 |
+
step=0.05,
|
660 |
+
interactive=True,
|
661 |
+
)
|
662 |
+
|
663 |
+
enable_laplacian_blend = gr.Checkbox(
|
664 |
+
label="Laplacian Blending",
|
665 |
+
value=True,
|
666 |
+
interactive=True,
|
667 |
+
)
|
668 |
+
|
669 |
+
|
670 |
+
source_image_input = gr.Image(
|
671 |
+
label="Source face", type="filepath", interactive=True
|
672 |
+
)
|
673 |
+
|
674 |
+
with gr.Box(visible=False) as specific_face:
|
675 |
+
for i in range(NUM_OF_SRC_SPECIFIC):
|
676 |
+
idx = i + 1
|
677 |
+
code = "\n"
|
678 |
+
code += f"with gr.Tab(label='({idx})'):"
|
679 |
+
code += "\n\twith gr.Row():"
|
680 |
+
code += f"\n\t\tsrc{idx} = gr.Image(interactive=True, type='numpy', label='Source Face {idx}')"
|
681 |
+
code += f"\n\t\ttrg{idx} = gr.Image(interactive=True, type='numpy', label='Specific Face {idx}')"
|
682 |
+
exec(code)
|
683 |
+
|
684 |
+
distance_slider = gr.Slider(
|
685 |
+
minimum=0,
|
686 |
+
maximum=2,
|
687 |
+
value=0.6,
|
688 |
+
interactive=True,
|
689 |
+
label="Distance",
|
690 |
+
info="Lower distance is more similar and higher distance is less similar to the target face.",
|
691 |
+
)
|
692 |
+
|
693 |
+
with gr.Group():
|
694 |
+
input_type = gr.Radio(
|
695 |
+
["Image", "Video"],
|
696 |
+
label="Target Type",
|
697 |
+
value="Image",
|
698 |
+
)
|
699 |
+
|
700 |
+
with gr.Box(visible=True) as input_image_group:
|
701 |
+
image_input = gr.Image(
|
702 |
+
label="Target Image", interactive=True, type="filepath"
|
703 |
+
)
|
704 |
+
|
705 |
+
with gr.Box(visible=False) as input_video_group:
|
706 |
+
vid_widget = gr.Video if USE_COLAB else gr.Text
|
707 |
+
video_input = gr.Video(
|
708 |
+
label="Target Video", interactive=True
|
709 |
+
)
|
710 |
+
with gr.Accordion("✂️ Trim video", open=False):
|
711 |
+
with gr.Column():
|
712 |
+
with gr.Row():
|
713 |
+
set_slider_range_btn = gr.Button(
|
714 |
+
"Set frame range", interactive=True
|
715 |
+
)
|
716 |
+
show_trim_preview_btn = gr.Checkbox(
|
717 |
+
label="Show frame when slider change",
|
718 |
+
value=True,
|
719 |
+
interactive=True,
|
720 |
+
)
|
721 |
+
|
722 |
+
video_fps = gr.Number(
|
723 |
+
value=30,
|
724 |
+
interactive=False,
|
725 |
+
label="Fps",
|
726 |
+
visible=False,
|
727 |
+
)
|
728 |
+
start_frame = gr.Slider(
|
729 |
+
minimum=0,
|
730 |
+
maximum=1,
|
731 |
+
value=0,
|
732 |
+
step=1,
|
733 |
+
interactive=True,
|
734 |
+
label="Start Frame",
|
735 |
+
info="",
|
736 |
+
)
|
737 |
+
end_frame = gr.Slider(
|
738 |
+
minimum=0,
|
739 |
+
maximum=1,
|
740 |
+
value=1,
|
741 |
+
step=1,
|
742 |
+
interactive=True,
|
743 |
+
label="End Frame",
|
744 |
+
info="",
|
745 |
+
)
|
746 |
+
trim_and_reload_btn = gr.Button(
|
747 |
+
"Trim and Reload", interactive=True
|
748 |
+
)
|
749 |
+
|
750 |
+
with gr.Box(visible=False) as input_directory_group:
|
751 |
+
direc_input = gr.Text(label="Path", interactive=True)
|
752 |
+
|
753 |
+
with gr.Column(scale=0.6):
|
754 |
+
info = gr.Markdown(value="...")
|
755 |
+
|
756 |
+
with gr.Row():
|
757 |
+
swap_button = gr.Button("✨ Swap", variant="primary")
|
758 |
+
cancel_button = gr.Button("⛔ Cancel")
|
759 |
+
|
760 |
+
preview_image = gr.Image(label="Output", interactive=False)
|
761 |
+
preview_video = gr.Video(
|
762 |
+
label="Output", interactive=False, visible=False
|
763 |
+
)
|
764 |
+
|
765 |
+
with gr.Row():
|
766 |
+
output_directory_button = gr.Button(
|
767 |
+
"📂", interactive=False, visible=False
|
768 |
+
)
|
769 |
+
output_video_button = gr.Button(
|
770 |
+
"🎬", interactive=False, visible=False
|
771 |
+
)
|
772 |
+
|
773 |
+
with gr.Box():
|
774 |
+
with gr.Row():
|
775 |
+
gr.Markdown(
|
776 |
+
"### [🤝 Sponsor](https://github.com/sponsors/harisreedhar)"
|
777 |
+
)
|
778 |
+
gr.Markdown(
|
779 |
+
"### [👨💻 Source code](https://github.com/harisreedhar/Swap-Mukham)"
|
780 |
+
)
|
781 |
+
gr.Markdown(
|
782 |
+
"### [⚠️ Disclaimer](https://github.com/harisreedhar/Swap-Mukham#disclaimer)"
|
783 |
+
)
|
784 |
+
gr.Markdown(
|
785 |
+
"### [🌐 Run in Colab](https://colab.research.google.com/github/harisreedhar/Swap-Mukham/blob/main/swap_mukham_colab.ipynb)"
|
786 |
+
)
|
787 |
+
gr.Markdown(
|
788 |
+
"### [🤗 Acknowledgements](https://github.com/harisreedhar/Swap-Mukham#acknowledgements)"
|
789 |
+
)
|
790 |
+
|
791 |
+
## ------------------------------ GRADIO EVENTS ------------------------------
|
792 |
+
|
793 |
+
set_slider_range_event = set_slider_range_btn.click(
|
794 |
+
video_changed,
|
795 |
+
inputs=[video_input],
|
796 |
+
outputs=[start_frame, end_frame, video_fps],
|
797 |
+
)
|
798 |
+
|
799 |
+
trim_and_reload_event = trim_and_reload_btn.click(
|
800 |
+
fn=trim_and_reload,
|
801 |
+
inputs=[video_input, output_directory, output_name, start_frame, end_frame],
|
802 |
+
outputs=[video_input, info],
|
803 |
+
)
|
804 |
+
|
805 |
+
start_frame_event = start_frame.release(
|
806 |
+
fn=slider_changed,
|
807 |
+
inputs=[show_trim_preview_btn, video_input, start_frame],
|
808 |
+
outputs=[preview_image, preview_video],
|
809 |
+
show_progress=True,
|
810 |
+
)
|
811 |
+
|
812 |
+
end_frame_event = end_frame.release(
|
813 |
+
fn=slider_changed,
|
814 |
+
inputs=[show_trim_preview_btn, video_input, end_frame],
|
815 |
+
outputs=[preview_image, preview_video],
|
816 |
+
show_progress=True,
|
817 |
+
)
|
818 |
+
|
819 |
+
input_type.change(
|
820 |
+
update_radio,
|
821 |
+
inputs=[input_type],
|
822 |
+
outputs=[input_image_group, input_video_group, input_directory_group],
|
823 |
+
)
|
824 |
+
swap_option.change(
|
825 |
+
swap_option_changed,
|
826 |
+
inputs=[swap_option],
|
827 |
+
outputs=[age, specific_face, source_image_input],
|
828 |
+
)
|
829 |
+
|
830 |
+
apply_detection_settings.click(
|
831 |
+
analyse_settings_changed,
|
832 |
+
inputs=[detect_condition_dropdown, detection_size, detection_threshold],
|
833 |
+
outputs=[info],
|
834 |
+
)
|
835 |
+
|
836 |
+
src_specific_inputs = []
|
837 |
+
gen_variable_txt = ",".join(
|
838 |
+
[f"src{i+1}" for i in range(NUM_OF_SRC_SPECIFIC)]
|
839 |
+
+ [f"trg{i+1}" for i in range(NUM_OF_SRC_SPECIFIC)]
|
840 |
+
)
|
841 |
+
exec(f"src_specific_inputs = ({gen_variable_txt})")
|
842 |
+
swap_inputs = [
|
843 |
+
input_type,
|
844 |
+
image_input,
|
845 |
+
video_input,
|
846 |
+
direc_input,
|
847 |
+
source_image_input,
|
848 |
+
output_directory,
|
849 |
+
output_name,
|
850 |
+
keep_output_sequence,
|
851 |
+
swap_option,
|
852 |
+
age,
|
853 |
+
distance_slider,
|
854 |
+
face_enhancer_name,
|
855 |
+
enable_face_parser_mask,
|
856 |
+
mask_include,
|
857 |
+
mask_soft_kernel,
|
858 |
+
mask_soft_iterations,
|
859 |
+
blur_amount,
|
860 |
+
erode_amount,
|
861 |
+
face_scale,
|
862 |
+
enable_laplacian_blend,
|
863 |
+
crop_top,
|
864 |
+
crop_bott,
|
865 |
+
crop_left,
|
866 |
+
crop_right,
|
867 |
+
*src_specific_inputs,
|
868 |
+
]
|
869 |
+
|
870 |
+
swap_outputs = [
|
871 |
+
info,
|
872 |
+
preview_image,
|
873 |
+
output_directory_button,
|
874 |
+
output_video_button,
|
875 |
+
preview_video,
|
876 |
+
]
|
877 |
+
|
878 |
+
swap_event = swap_button.click(
|
879 |
+
fn=process, inputs=swap_inputs, outputs=swap_outputs, show_progress=True
|
880 |
+
)
|
881 |
+
|
882 |
+
cancel_button.click(
|
883 |
+
fn=stop_running,
|
884 |
+
inputs=None,
|
885 |
+
outputs=[info],
|
886 |
+
cancels=[
|
887 |
+
swap_event,
|
888 |
+
trim_and_reload_event,
|
889 |
+
set_slider_range_event,
|
890 |
+
start_frame_event,
|
891 |
+
end_frame_event,
|
892 |
+
],
|
893 |
+
show_progress=True,
|
894 |
+
)
|
895 |
+
output_directory_button.click(
|
896 |
+
lambda: open_directory(path=WORKSPACE), inputs=None, outputs=None
|
897 |
+
)
|
898 |
+
output_video_button.click(
|
899 |
+
lambda: open_directory(path=OUTPUT_FILE), inputs=None, outputs=None
|
900 |
+
)
|
901 |
+
|
902 |
+
if __name__ == "__main__":
|
903 |
+
if USE_COLAB:
|
904 |
+
print("Running in colab mode")
|
905 |
+
|
906 |
+
interface.queue(concurrency_count=2, max_size=20).launch(share=USE_COLAB)
|
assets/images/logo.png
ADDED
assets/pretrained_models/79999_iter.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:468e13ca13a9b43cc0881a9f99083a430e9c0a38abd935431d1c28ee94b26567
|
3 |
+
size 53289463
|
assets/pretrained_models/GFPGANv1.4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e2cd4703ab14f4d01fd1383a8a8b266f9a5833dacee8e6a79d3bf21a1b6be5ad
|
3 |
+
size 348632874
|
assets/pretrained_models/RealESRGAN_x2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c830d067d54fc767b9543a8432f36d91bc2de313584e8bbfe4ac26a47339e899
|
3 |
+
size 67061725
|
assets/pretrained_models/RealESRGAN_x4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa00f09ad753d88576b21ed977e97d634976377031b178acc3b5b238df463400
|
3 |
+
size 67040989
|
assets/pretrained_models/RealESRGAN_x8.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b72fb469d12f05a4770813d2603eb1b550f40df6fb8b37d6c7bc2db3d2bff5e
|
3 |
+
size 67189359
|
assets/pretrained_models/codeformer.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91e7e881c5001fea4a535e8f96eaeaa672d30c963a678a3e27f0429a6620f57a
|
3 |
+
size 376821950
|
assets/pretrained_models/inswapper_128.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4a3f08c753cb72d04e10aa0f7dbe3deebbf39567d4ead6dce08e98aa49e16af
|
3 |
+
size 554253681
|
assets/pretrained_models/open-nsfw.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:864bb37bf8863564b87eb330ab8c785a79a773f4e7c43cb96db52ed8611305fa
|
3 |
+
size 23590724
|
assets/pretrained_models/readme.md
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Downolad these models here
|
2 |
+
- [inswapper_128.onnx](https://huggingface.co/deepinsight/inswapper/resolve/main/inswapper_128.onnx)
|
3 |
+
- [GFPGANv1.4.pth](https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth)
|
4 |
+
- [79999_iter.pth](https://drive.google.com/open?id=154JgKpzCPW82qINcVieuPH3fZ2e0P812)
|
face_analyser.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
from tqdm import tqdm
|
5 |
+
from utils import scale_bbox_from_center
|
6 |
+
|
7 |
+
detect_conditions = [
|
8 |
+
"best detection",
|
9 |
+
"left most",
|
10 |
+
"right most",
|
11 |
+
"top most",
|
12 |
+
"bottom most",
|
13 |
+
"middle",
|
14 |
+
"biggest",
|
15 |
+
"smallest",
|
16 |
+
]
|
17 |
+
|
18 |
+
swap_options_list = [
|
19 |
+
"All Face",
|
20 |
+
"Specific Face",
|
21 |
+
"Age less than",
|
22 |
+
"Age greater than",
|
23 |
+
"All Male",
|
24 |
+
"All Female",
|
25 |
+
"Left Most",
|
26 |
+
"Right Most",
|
27 |
+
"Top Most",
|
28 |
+
"Bottom Most",
|
29 |
+
"Middle",
|
30 |
+
"Biggest",
|
31 |
+
"Smallest",
|
32 |
+
]
|
33 |
+
|
34 |
+
def get_single_face(faces, method="best detection"):
|
35 |
+
total_faces = len(faces)
|
36 |
+
if total_faces == 1:
|
37 |
+
return faces[0]
|
38 |
+
|
39 |
+
print(f"{total_faces} face detected. Using {method} face.")
|
40 |
+
if method == "best detection":
|
41 |
+
return sorted(faces, key=lambda face: face["det_score"])[-1]
|
42 |
+
elif method == "left most":
|
43 |
+
return sorted(faces, key=lambda face: face["bbox"][0])[0]
|
44 |
+
elif method == "right most":
|
45 |
+
return sorted(faces, key=lambda face: face["bbox"][0])[-1]
|
46 |
+
elif method == "top most":
|
47 |
+
return sorted(faces, key=lambda face: face["bbox"][1])[0]
|
48 |
+
elif method == "bottom most":
|
49 |
+
return sorted(faces, key=lambda face: face["bbox"][1])[-1]
|
50 |
+
elif method == "middle":
|
51 |
+
return sorted(faces, key=lambda face: (
|
52 |
+
(face["bbox"][0] + face["bbox"][2]) / 2 - 0.5) ** 2 +
|
53 |
+
((face["bbox"][1] + face["bbox"][3]) / 2 - 0.5) ** 2)[len(faces) // 2]
|
54 |
+
elif method == "biggest":
|
55 |
+
return sorted(faces, key=lambda face: (face["bbox"][2] - face["bbox"][0]) * (face["bbox"][3] - face["bbox"][1]))[-1]
|
56 |
+
elif method == "smallest":
|
57 |
+
return sorted(faces, key=lambda face: (face["bbox"][2] - face["bbox"][0]) * (face["bbox"][3] - face["bbox"][1]))[0]
|
58 |
+
|
59 |
+
|
60 |
+
def analyse_face(image, model, return_single_face=True, detect_condition="best detection", scale=1.0):
|
61 |
+
faces = model.get(image)
|
62 |
+
if scale != 1: # landmark-scale
|
63 |
+
for i, face in enumerate(faces):
|
64 |
+
landmark = face['kps']
|
65 |
+
center = np.mean(landmark, axis=0)
|
66 |
+
landmark = center + (landmark - center) * scale
|
67 |
+
faces[i]['kps'] = landmark
|
68 |
+
|
69 |
+
if not return_single_face:
|
70 |
+
return faces
|
71 |
+
|
72 |
+
return get_single_face(faces, method=detect_condition)
|
73 |
+
|
74 |
+
|
75 |
+
def cosine_distance(a, b):
|
76 |
+
a /= np.linalg.norm(a)
|
77 |
+
b /= np.linalg.norm(b)
|
78 |
+
return 1 - np.dot(a, b)
|
79 |
+
|
80 |
+
|
81 |
+
def get_analysed_data(face_analyser, image_sequence, source_data, swap_condition="All face", detect_condition="left most", scale=1.0):
|
82 |
+
if swap_condition != "Specific Face":
|
83 |
+
source_path, age = source_data
|
84 |
+
source_image = cv2.imread(source_path)
|
85 |
+
analysed_source = analyse_face(source_image, face_analyser, return_single_face=True, detect_condition=detect_condition, scale=scale)
|
86 |
+
else:
|
87 |
+
analysed_source_specifics = []
|
88 |
+
source_specifics, threshold = source_data
|
89 |
+
for source, specific in zip(*source_specifics):
|
90 |
+
if source is None or specific is None:
|
91 |
+
continue
|
92 |
+
analysed_source = analyse_face(source, face_analyser, return_single_face=True, detect_condition=detect_condition, scale=scale)
|
93 |
+
analysed_specific = analyse_face(specific, face_analyser, return_single_face=True, detect_condition=detect_condition, scale=scale)
|
94 |
+
analysed_source_specifics.append([analysed_source, analysed_specific])
|
95 |
+
|
96 |
+
analysed_target_list = []
|
97 |
+
analysed_source_list = []
|
98 |
+
whole_frame_eql_list = []
|
99 |
+
num_faces_per_frame = []
|
100 |
+
|
101 |
+
total_frames = len(image_sequence)
|
102 |
+
curr_idx = 0
|
103 |
+
for curr_idx, frame_path in tqdm(enumerate(image_sequence), total=total_frames, desc="Analysing face data"):
|
104 |
+
frame = cv2.imread(frame_path)
|
105 |
+
analysed_faces = analyse_face(frame, face_analyser, return_single_face=False, detect_condition=detect_condition, scale=scale)
|
106 |
+
|
107 |
+
n_faces = 0
|
108 |
+
for analysed_face in analysed_faces:
|
109 |
+
if swap_condition == "All Face":
|
110 |
+
analysed_target_list.append(analysed_face)
|
111 |
+
analysed_source_list.append(analysed_source)
|
112 |
+
whole_frame_eql_list.append(frame_path)
|
113 |
+
n_faces += 1
|
114 |
+
elif swap_condition == "Age less than" and analysed_face["age"] < age:
|
115 |
+
analysed_target_list.append(analysed_face)
|
116 |
+
analysed_source_list.append(analysed_source)
|
117 |
+
whole_frame_eql_list.append(frame_path)
|
118 |
+
n_faces += 1
|
119 |
+
elif swap_condition == "Age greater than" and analysed_face["age"] > age:
|
120 |
+
analysed_target_list.append(analysed_face)
|
121 |
+
analysed_source_list.append(analysed_source)
|
122 |
+
whole_frame_eql_list.append(frame_path)
|
123 |
+
n_faces += 1
|
124 |
+
elif swap_condition == "All Male" and analysed_face["gender"] == 1:
|
125 |
+
analysed_target_list.append(analysed_face)
|
126 |
+
analysed_source_list.append(analysed_source)
|
127 |
+
whole_frame_eql_list.append(frame_path)
|
128 |
+
n_faces += 1
|
129 |
+
elif swap_condition == "All Female" and analysed_face["gender"] == 0:
|
130 |
+
analysed_target_list.append(analysed_face)
|
131 |
+
analysed_source_list.append(analysed_source)
|
132 |
+
whole_frame_eql_list.append(frame_path)
|
133 |
+
n_faces += 1
|
134 |
+
elif swap_condition == "Specific Face":
|
135 |
+
for analysed_source, analysed_specific in analysed_source_specifics:
|
136 |
+
distance = cosine_distance(analysed_specific["embedding"], analysed_face["embedding"])
|
137 |
+
if distance < threshold:
|
138 |
+
analysed_target_list.append(analysed_face)
|
139 |
+
analysed_source_list.append(analysed_source)
|
140 |
+
whole_frame_eql_list.append(frame_path)
|
141 |
+
n_faces += 1
|
142 |
+
|
143 |
+
if swap_condition == "Left Most":
|
144 |
+
analysed_face = get_single_face(analysed_faces, method="left most")
|
145 |
+
analysed_target_list.append(analysed_face)
|
146 |
+
analysed_source_list.append(analysed_source)
|
147 |
+
whole_frame_eql_list.append(frame_path)
|
148 |
+
n_faces += 1
|
149 |
+
|
150 |
+
elif swap_condition == "Right Most":
|
151 |
+
analysed_face = get_single_face(analysed_faces, method="right most")
|
152 |
+
analysed_target_list.append(analysed_face)
|
153 |
+
analysed_source_list.append(analysed_source)
|
154 |
+
whole_frame_eql_list.append(frame_path)
|
155 |
+
n_faces += 1
|
156 |
+
|
157 |
+
elif swap_condition == "Top Most":
|
158 |
+
analysed_face = get_single_face(analysed_faces, method="top most")
|
159 |
+
analysed_target_list.append(analysed_face)
|
160 |
+
analysed_source_list.append(analysed_source)
|
161 |
+
whole_frame_eql_list.append(frame_path)
|
162 |
+
n_faces += 1
|
163 |
+
|
164 |
+
elif swap_condition == "Bottom Most":
|
165 |
+
analysed_face = get_single_face(analysed_faces, method="bottom most")
|
166 |
+
analysed_target_list.append(analysed_face)
|
167 |
+
analysed_source_list.append(analysed_source)
|
168 |
+
whole_frame_eql_list.append(frame_path)
|
169 |
+
n_faces += 1
|
170 |
+
|
171 |
+
elif swap_condition == "Middle":
|
172 |
+
analysed_face = get_single_face(analysed_faces, method="middle")
|
173 |
+
analysed_target_list.append(analysed_face)
|
174 |
+
analysed_source_list.append(analysed_source)
|
175 |
+
whole_frame_eql_list.append(frame_path)
|
176 |
+
n_faces += 1
|
177 |
+
|
178 |
+
elif swap_condition == "Biggest":
|
179 |
+
analysed_face = get_single_face(analysed_faces, method="biggest")
|
180 |
+
analysed_target_list.append(analysed_face)
|
181 |
+
analysed_source_list.append(analysed_source)
|
182 |
+
whole_frame_eql_list.append(frame_path)
|
183 |
+
n_faces += 1
|
184 |
+
|
185 |
+
elif swap_condition == "Smallest":
|
186 |
+
analysed_face = get_single_face(analysed_faces, method="smallest")
|
187 |
+
analysed_target_list.append(analysed_face)
|
188 |
+
analysed_source_list.append(analysed_source)
|
189 |
+
whole_frame_eql_list.append(frame_path)
|
190 |
+
n_faces += 1
|
191 |
+
|
192 |
+
num_faces_per_frame.append(n_faces)
|
193 |
+
|
194 |
+
return analysed_target_list, analysed_source_list, whole_frame_eql_list, num_faces_per_frame
|
face_enhancer.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
import gfpgan
|
5 |
+
from PIL import Image
|
6 |
+
from upscaler.RealESRGAN import RealESRGAN
|
7 |
+
from upscaler.codeformer import CodeFormerEnhancer
|
8 |
+
|
9 |
+
def gfpgan_runner(img, model):
|
10 |
+
_, imgs, _ = model.enhance(img, paste_back=True, has_aligned=True)
|
11 |
+
return imgs[0]
|
12 |
+
|
13 |
+
|
14 |
+
def realesrgan_runner(img, model):
|
15 |
+
img = model.predict(img)
|
16 |
+
return img
|
17 |
+
|
18 |
+
|
19 |
+
def codeformer_runner(img, model):
|
20 |
+
img = model.enhance(img)
|
21 |
+
return img
|
22 |
+
|
23 |
+
|
24 |
+
supported_enhancers = {
|
25 |
+
"CodeFormer": ("./assets/pretrained_models/codeformer.onnx", codeformer_runner),
|
26 |
+
"GFPGAN": ("./assets/pretrained_models/GFPGANv1.4.pth", gfpgan_runner),
|
27 |
+
"REAL-ESRGAN 2x": ("./assets/pretrained_models/RealESRGAN_x2.pth", realesrgan_runner),
|
28 |
+
"REAL-ESRGAN 4x": ("./assets/pretrained_models/RealESRGAN_x4.pth", realesrgan_runner),
|
29 |
+
"REAL-ESRGAN 8x": ("./assets/pretrained_models/RealESRGAN_x8.pth", realesrgan_runner)
|
30 |
+
}
|
31 |
+
|
32 |
+
cv2_interpolations = ["LANCZOS4", "CUBIC", "NEAREST"]
|
33 |
+
|
34 |
+
def get_available_enhancer_names():
|
35 |
+
available = []
|
36 |
+
for name, data in supported_enhancers.items():
|
37 |
+
path = os.path.join(os.path.abspath(os.path.dirname(__file__)), data[0])
|
38 |
+
if os.path.exists(path):
|
39 |
+
available.append(name)
|
40 |
+
return available
|
41 |
+
|
42 |
+
|
43 |
+
def load_face_enhancer_model(name='GFPGAN', device="cpu"):
|
44 |
+
assert name in get_available_enhancer_names() + cv2_interpolations, f"Face enhancer {name} unavailable."
|
45 |
+
if name in supported_enhancers.keys():
|
46 |
+
model_path, model_runner = supported_enhancers.get(name)
|
47 |
+
model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), model_path)
|
48 |
+
if name == 'CodeFormer':
|
49 |
+
model = CodeFormerEnhancer(model_path=model_path, device=device)
|
50 |
+
elif name == 'GFPGAN':
|
51 |
+
model = gfpgan.GFPGANer(model_path=model_path, upscale=1, device=device)
|
52 |
+
elif name == 'REAL-ESRGAN 2x':
|
53 |
+
model = RealESRGAN(device, scale=2)
|
54 |
+
model.load_weights(model_path, download=False)
|
55 |
+
elif name == 'REAL-ESRGAN 4x':
|
56 |
+
model = RealESRGAN(device, scale=4)
|
57 |
+
model.load_weights(model_path, download=False)
|
58 |
+
elif name == 'REAL-ESRGAN 8x':
|
59 |
+
model = RealESRGAN(device, scale=8)
|
60 |
+
model.load_weights(model_path, download=False)
|
61 |
+
elif name == 'LANCZOS4':
|
62 |
+
model = None
|
63 |
+
model_runner = lambda img, _: cv2.resize(img, (512,512), interpolation=cv2.INTER_LANCZOS4)
|
64 |
+
elif name == 'CUBIC':
|
65 |
+
model = None
|
66 |
+
model_runner = lambda img, _: cv2.resize(img, (512,512), interpolation=cv2.INTER_CUBIC)
|
67 |
+
elif name == 'NEAREST':
|
68 |
+
model = None
|
69 |
+
model_runner = lambda img, _: cv2.resize(img, (512,512), interpolation=cv2.INTER_NEAREST)
|
70 |
+
else:
|
71 |
+
model = None
|
72 |
+
return (model, model_runner)
|
face_parsing/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .swap import init_parser, swap_regions, mask_regions, mask_regions_to_list
|
2 |
+
from .model import BiSeNet
|
3 |
+
from .parse_mask import init_parsing_model, get_parsed_mask, SoftErosion
|
face_parsing/model.py
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python
|
2 |
+
# -*- encoding: utf-8 -*-
|
3 |
+
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import torchvision
|
9 |
+
|
10 |
+
from .resnet import Resnet18
|
11 |
+
# from modules.bn import InPlaceABNSync as BatchNorm2d
|
12 |
+
|
13 |
+
|
14 |
+
class ConvBNReLU(nn.Module):
|
15 |
+
def __init__(self, in_chan, out_chan, ks=3, stride=1, padding=1, *args, **kwargs):
|
16 |
+
super(ConvBNReLU, self).__init__()
|
17 |
+
self.conv = nn.Conv2d(in_chan,
|
18 |
+
out_chan,
|
19 |
+
kernel_size = ks,
|
20 |
+
stride = stride,
|
21 |
+
padding = padding,
|
22 |
+
bias = False)
|
23 |
+
self.bn = nn.BatchNorm2d(out_chan)
|
24 |
+
self.init_weight()
|
25 |
+
|
26 |
+
def forward(self, x):
|
27 |
+
x = self.conv(x)
|
28 |
+
x = F.relu(self.bn(x))
|
29 |
+
return x
|
30 |
+
|
31 |
+
def init_weight(self):
|
32 |
+
for ly in self.children():
|
33 |
+
if isinstance(ly, nn.Conv2d):
|
34 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
35 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
36 |
+
|
37 |
+
class BiSeNetOutput(nn.Module):
|
38 |
+
def __init__(self, in_chan, mid_chan, n_classes, *args, **kwargs):
|
39 |
+
super(BiSeNetOutput, self).__init__()
|
40 |
+
self.conv = ConvBNReLU(in_chan, mid_chan, ks=3, stride=1, padding=1)
|
41 |
+
self.conv_out = nn.Conv2d(mid_chan, n_classes, kernel_size=1, bias=False)
|
42 |
+
self.init_weight()
|
43 |
+
|
44 |
+
def forward(self, x):
|
45 |
+
x = self.conv(x)
|
46 |
+
x = self.conv_out(x)
|
47 |
+
return x
|
48 |
+
|
49 |
+
def init_weight(self):
|
50 |
+
for ly in self.children():
|
51 |
+
if isinstance(ly, nn.Conv2d):
|
52 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
53 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
54 |
+
|
55 |
+
def get_params(self):
|
56 |
+
wd_params, nowd_params = [], []
|
57 |
+
for name, module in self.named_modules():
|
58 |
+
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
|
59 |
+
wd_params.append(module.weight)
|
60 |
+
if not module.bias is None:
|
61 |
+
nowd_params.append(module.bias)
|
62 |
+
elif isinstance(module, nn.BatchNorm2d):
|
63 |
+
nowd_params += list(module.parameters())
|
64 |
+
return wd_params, nowd_params
|
65 |
+
|
66 |
+
|
67 |
+
class AttentionRefinementModule(nn.Module):
|
68 |
+
def __init__(self, in_chan, out_chan, *args, **kwargs):
|
69 |
+
super(AttentionRefinementModule, self).__init__()
|
70 |
+
self.conv = ConvBNReLU(in_chan, out_chan, ks=3, stride=1, padding=1)
|
71 |
+
self.conv_atten = nn.Conv2d(out_chan, out_chan, kernel_size= 1, bias=False)
|
72 |
+
self.bn_atten = nn.BatchNorm2d(out_chan)
|
73 |
+
self.sigmoid_atten = nn.Sigmoid()
|
74 |
+
self.init_weight()
|
75 |
+
|
76 |
+
def forward(self, x):
|
77 |
+
feat = self.conv(x)
|
78 |
+
atten = F.avg_pool2d(feat, feat.size()[2:])
|
79 |
+
atten = self.conv_atten(atten)
|
80 |
+
atten = self.bn_atten(atten)
|
81 |
+
atten = self.sigmoid_atten(atten)
|
82 |
+
out = torch.mul(feat, atten)
|
83 |
+
return out
|
84 |
+
|
85 |
+
def init_weight(self):
|
86 |
+
for ly in self.children():
|
87 |
+
if isinstance(ly, nn.Conv2d):
|
88 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
89 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
90 |
+
|
91 |
+
|
92 |
+
class ContextPath(nn.Module):
|
93 |
+
def __init__(self, *args, **kwargs):
|
94 |
+
super(ContextPath, self).__init__()
|
95 |
+
self.resnet = Resnet18()
|
96 |
+
self.arm16 = AttentionRefinementModule(256, 128)
|
97 |
+
self.arm32 = AttentionRefinementModule(512, 128)
|
98 |
+
self.conv_head32 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
|
99 |
+
self.conv_head16 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
|
100 |
+
self.conv_avg = ConvBNReLU(512, 128, ks=1, stride=1, padding=0)
|
101 |
+
|
102 |
+
self.init_weight()
|
103 |
+
|
104 |
+
def forward(self, x):
|
105 |
+
H0, W0 = x.size()[2:]
|
106 |
+
feat8, feat16, feat32 = self.resnet(x)
|
107 |
+
H8, W8 = feat8.size()[2:]
|
108 |
+
H16, W16 = feat16.size()[2:]
|
109 |
+
H32, W32 = feat32.size()[2:]
|
110 |
+
|
111 |
+
avg = F.avg_pool2d(feat32, feat32.size()[2:])
|
112 |
+
avg = self.conv_avg(avg)
|
113 |
+
avg_up = F.interpolate(avg, (H32, W32), mode='nearest')
|
114 |
+
|
115 |
+
feat32_arm = self.arm32(feat32)
|
116 |
+
feat32_sum = feat32_arm + avg_up
|
117 |
+
feat32_up = F.interpolate(feat32_sum, (H16, W16), mode='nearest')
|
118 |
+
feat32_up = self.conv_head32(feat32_up)
|
119 |
+
|
120 |
+
feat16_arm = self.arm16(feat16)
|
121 |
+
feat16_sum = feat16_arm + feat32_up
|
122 |
+
feat16_up = F.interpolate(feat16_sum, (H8, W8), mode='nearest')
|
123 |
+
feat16_up = self.conv_head16(feat16_up)
|
124 |
+
|
125 |
+
return feat8, feat16_up, feat32_up # x8, x8, x16
|
126 |
+
|
127 |
+
def init_weight(self):
|
128 |
+
for ly in self.children():
|
129 |
+
if isinstance(ly, nn.Conv2d):
|
130 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
131 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
132 |
+
|
133 |
+
def get_params(self):
|
134 |
+
wd_params, nowd_params = [], []
|
135 |
+
for name, module in self.named_modules():
|
136 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
137 |
+
wd_params.append(module.weight)
|
138 |
+
if not module.bias is None:
|
139 |
+
nowd_params.append(module.bias)
|
140 |
+
elif isinstance(module, nn.BatchNorm2d):
|
141 |
+
nowd_params += list(module.parameters())
|
142 |
+
return wd_params, nowd_params
|
143 |
+
|
144 |
+
|
145 |
+
### This is not used, since I replace this with the resnet feature with the same size
|
146 |
+
class SpatialPath(nn.Module):
|
147 |
+
def __init__(self, *args, **kwargs):
|
148 |
+
super(SpatialPath, self).__init__()
|
149 |
+
self.conv1 = ConvBNReLU(3, 64, ks=7, stride=2, padding=3)
|
150 |
+
self.conv2 = ConvBNReLU(64, 64, ks=3, stride=2, padding=1)
|
151 |
+
self.conv3 = ConvBNReLU(64, 64, ks=3, stride=2, padding=1)
|
152 |
+
self.conv_out = ConvBNReLU(64, 128, ks=1, stride=1, padding=0)
|
153 |
+
self.init_weight()
|
154 |
+
|
155 |
+
def forward(self, x):
|
156 |
+
feat = self.conv1(x)
|
157 |
+
feat = self.conv2(feat)
|
158 |
+
feat = self.conv3(feat)
|
159 |
+
feat = self.conv_out(feat)
|
160 |
+
return feat
|
161 |
+
|
162 |
+
def init_weight(self):
|
163 |
+
for ly in self.children():
|
164 |
+
if isinstance(ly, nn.Conv2d):
|
165 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
166 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
167 |
+
|
168 |
+
def get_params(self):
|
169 |
+
wd_params, nowd_params = [], []
|
170 |
+
for name, module in self.named_modules():
|
171 |
+
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
|
172 |
+
wd_params.append(module.weight)
|
173 |
+
if not module.bias is None:
|
174 |
+
nowd_params.append(module.bias)
|
175 |
+
elif isinstance(module, nn.BatchNorm2d):
|
176 |
+
nowd_params += list(module.parameters())
|
177 |
+
return wd_params, nowd_params
|
178 |
+
|
179 |
+
|
180 |
+
class FeatureFusionModule(nn.Module):
|
181 |
+
def __init__(self, in_chan, out_chan, *args, **kwargs):
|
182 |
+
super(FeatureFusionModule, self).__init__()
|
183 |
+
self.convblk = ConvBNReLU(in_chan, out_chan, ks=1, stride=1, padding=0)
|
184 |
+
self.conv1 = nn.Conv2d(out_chan,
|
185 |
+
out_chan//4,
|
186 |
+
kernel_size = 1,
|
187 |
+
stride = 1,
|
188 |
+
padding = 0,
|
189 |
+
bias = False)
|
190 |
+
self.conv2 = nn.Conv2d(out_chan//4,
|
191 |
+
out_chan,
|
192 |
+
kernel_size = 1,
|
193 |
+
stride = 1,
|
194 |
+
padding = 0,
|
195 |
+
bias = False)
|
196 |
+
self.relu = nn.ReLU(inplace=True)
|
197 |
+
self.sigmoid = nn.Sigmoid()
|
198 |
+
self.init_weight()
|
199 |
+
|
200 |
+
def forward(self, fsp, fcp):
|
201 |
+
fcat = torch.cat([fsp, fcp], dim=1)
|
202 |
+
feat = self.convblk(fcat)
|
203 |
+
atten = F.avg_pool2d(feat, feat.size()[2:])
|
204 |
+
atten = self.conv1(atten)
|
205 |
+
atten = self.relu(atten)
|
206 |
+
atten = self.conv2(atten)
|
207 |
+
atten = self.sigmoid(atten)
|
208 |
+
feat_atten = torch.mul(feat, atten)
|
209 |
+
feat_out = feat_atten + feat
|
210 |
+
return feat_out
|
211 |
+
|
212 |
+
def init_weight(self):
|
213 |
+
for ly in self.children():
|
214 |
+
if isinstance(ly, nn.Conv2d):
|
215 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
216 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
217 |
+
|
218 |
+
def get_params(self):
|
219 |
+
wd_params, nowd_params = [], []
|
220 |
+
for name, module in self.named_modules():
|
221 |
+
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
|
222 |
+
wd_params.append(module.weight)
|
223 |
+
if not module.bias is None:
|
224 |
+
nowd_params.append(module.bias)
|
225 |
+
elif isinstance(module, nn.BatchNorm2d):
|
226 |
+
nowd_params += list(module.parameters())
|
227 |
+
return wd_params, nowd_params
|
228 |
+
|
229 |
+
|
230 |
+
class BiSeNet(nn.Module):
|
231 |
+
def __init__(self, n_classes, *args, **kwargs):
|
232 |
+
super(BiSeNet, self).__init__()
|
233 |
+
self.cp = ContextPath()
|
234 |
+
## here self.sp is deleted
|
235 |
+
self.ffm = FeatureFusionModule(256, 256)
|
236 |
+
self.conv_out = BiSeNetOutput(256, 256, n_classes)
|
237 |
+
self.conv_out16 = BiSeNetOutput(128, 64, n_classes)
|
238 |
+
self.conv_out32 = BiSeNetOutput(128, 64, n_classes)
|
239 |
+
self.init_weight()
|
240 |
+
|
241 |
+
def forward(self, x):
|
242 |
+
H, W = x.size()[2:]
|
243 |
+
feat_res8, feat_cp8, feat_cp16 = self.cp(x) # here return res3b1 feature
|
244 |
+
feat_sp = feat_res8 # use res3b1 feature to replace spatial path feature
|
245 |
+
feat_fuse = self.ffm(feat_sp, feat_cp8)
|
246 |
+
|
247 |
+
feat_out = self.conv_out(feat_fuse)
|
248 |
+
feat_out16 = self.conv_out16(feat_cp8)
|
249 |
+
feat_out32 = self.conv_out32(feat_cp16)
|
250 |
+
|
251 |
+
feat_out = F.interpolate(feat_out, (H, W), mode='bilinear', align_corners=True)
|
252 |
+
feat_out16 = F.interpolate(feat_out16, (H, W), mode='bilinear', align_corners=True)
|
253 |
+
feat_out32 = F.interpolate(feat_out32, (H, W), mode='bilinear', align_corners=True)
|
254 |
+
return feat_out, feat_out16, feat_out32
|
255 |
+
|
256 |
+
def init_weight(self):
|
257 |
+
for ly in self.children():
|
258 |
+
if isinstance(ly, nn.Conv2d):
|
259 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
260 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
261 |
+
|
262 |
+
def get_params(self):
|
263 |
+
wd_params, nowd_params, lr_mul_wd_params, lr_mul_nowd_params = [], [], [], []
|
264 |
+
for name, child in self.named_children():
|
265 |
+
child_wd_params, child_nowd_params = child.get_params()
|
266 |
+
if isinstance(child, FeatureFusionModule) or isinstance(child, BiSeNetOutput):
|
267 |
+
lr_mul_wd_params += child_wd_params
|
268 |
+
lr_mul_nowd_params += child_nowd_params
|
269 |
+
else:
|
270 |
+
wd_params += child_wd_params
|
271 |
+
nowd_params += child_nowd_params
|
272 |
+
return wd_params, nowd_params, lr_mul_wd_params, lr_mul_nowd_params
|
273 |
+
|
274 |
+
|
275 |
+
if __name__ == "__main__":
|
276 |
+
net = BiSeNet(19)
|
277 |
+
net.cuda()
|
278 |
+
net.eval()
|
279 |
+
in_ten = torch.randn(16, 3, 640, 480).cuda()
|
280 |
+
out, out16, out32 = net(in_ten)
|
281 |
+
print(out.shape)
|
282 |
+
|
283 |
+
net.get_params()
|
face_parsing/parse_mask.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import torch
|
3 |
+
import torchvision
|
4 |
+
import numpy as np
|
5 |
+
import torch.nn as nn
|
6 |
+
from PIL import Image
|
7 |
+
from tqdm import tqdm
|
8 |
+
import torch.nn.functional as F
|
9 |
+
import torchvision.transforms as transforms
|
10 |
+
|
11 |
+
from . model import BiSeNet
|
12 |
+
|
13 |
+
class SoftErosion(nn.Module):
|
14 |
+
def __init__(self, kernel_size=15, threshold=0.6, iterations=1):
|
15 |
+
super(SoftErosion, self).__init__()
|
16 |
+
r = kernel_size // 2
|
17 |
+
self.padding = r
|
18 |
+
self.iterations = iterations
|
19 |
+
self.threshold = threshold
|
20 |
+
|
21 |
+
# Create kernel
|
22 |
+
y_indices, x_indices = torch.meshgrid(torch.arange(0., kernel_size), torch.arange(0., kernel_size))
|
23 |
+
dist = torch.sqrt((x_indices - r) ** 2 + (y_indices - r) ** 2)
|
24 |
+
kernel = dist.max() - dist
|
25 |
+
kernel /= kernel.sum()
|
26 |
+
kernel = kernel.view(1, 1, *kernel.shape)
|
27 |
+
self.register_buffer('weight', kernel)
|
28 |
+
|
29 |
+
def forward(self, x):
|
30 |
+
batch_size = x.size(0) # Get the batch size
|
31 |
+
output = []
|
32 |
+
|
33 |
+
for i in tqdm(range(batch_size), desc="Soft-Erosion", leave=False):
|
34 |
+
input_tensor = x[i:i+1] # Take one input tensor from the batch
|
35 |
+
input_tensor = input_tensor.float() # Convert input to float tensor
|
36 |
+
input_tensor = input_tensor.unsqueeze(1) # Add a channel dimension
|
37 |
+
|
38 |
+
for _ in range(self.iterations - 1):
|
39 |
+
input_tensor = torch.min(input_tensor, F.conv2d(input_tensor, weight=self.weight,
|
40 |
+
groups=input_tensor.shape[1],
|
41 |
+
padding=self.padding))
|
42 |
+
input_tensor = F.conv2d(input_tensor, weight=self.weight, groups=input_tensor.shape[1],
|
43 |
+
padding=self.padding)
|
44 |
+
|
45 |
+
mask = input_tensor >= self.threshold
|
46 |
+
input_tensor[mask] = 1.0
|
47 |
+
input_tensor[~mask] /= input_tensor[~mask].max()
|
48 |
+
|
49 |
+
input_tensor = input_tensor.squeeze(1) # Remove the extra channel dimension
|
50 |
+
output.append(input_tensor.detach().cpu().numpy())
|
51 |
+
|
52 |
+
return np.array(output)
|
53 |
+
|
54 |
+
transform = transforms.Compose([
|
55 |
+
transforms.Resize((512, 512)),
|
56 |
+
transforms.ToTensor(),
|
57 |
+
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
|
58 |
+
])
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
def init_parsing_model(model_path, device="cpu"):
|
63 |
+
net = BiSeNet(19)
|
64 |
+
net.to(device)
|
65 |
+
net.load_state_dict(torch.load(model_path))
|
66 |
+
net.eval()
|
67 |
+
return net
|
68 |
+
|
69 |
+
def transform_images(imgs):
|
70 |
+
tensor_images = torch.stack([transform(Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))) for img in imgs], dim=0)
|
71 |
+
return tensor_images
|
72 |
+
|
73 |
+
def get_parsed_mask(net, imgs, classes=[1, 2, 3, 4, 5, 10, 11, 12, 13], device="cpu", batch_size=8, softness=20):
|
74 |
+
if softness > 0:
|
75 |
+
smooth_mask = SoftErosion(kernel_size=17, threshold=0.9, iterations=softness).to(device)
|
76 |
+
|
77 |
+
masks = []
|
78 |
+
for i in tqdm(range(0, len(imgs), batch_size), total=len(imgs) // batch_size, desc="Face-parsing"):
|
79 |
+
batch_imgs = imgs[i:i + batch_size]
|
80 |
+
|
81 |
+
tensor_images = transform_images(batch_imgs).to(device)
|
82 |
+
with torch.no_grad():
|
83 |
+
out = net(tensor_images)[0]
|
84 |
+
# parsing = out.argmax(dim=1)
|
85 |
+
# arget_classes = torch.tensor(classes).to(device)
|
86 |
+
# batch_masks = torch.isin(parsing, target_classes).to(device)
|
87 |
+
## torch.isin was slightly slower in my test, so using np.isin
|
88 |
+
parsing = out.argmax(dim=1).detach().cpu().numpy()
|
89 |
+
batch_masks = np.isin(parsing, classes).astype('float32')
|
90 |
+
|
91 |
+
if softness > 0:
|
92 |
+
# batch_masks = smooth_mask(batch_masks).transpose(1,0,2,3)[0]
|
93 |
+
mask_tensor = torch.from_numpy(batch_masks.copy()).float().to(device)
|
94 |
+
batch_masks = smooth_mask(mask_tensor).transpose(1,0,2,3)[0]
|
95 |
+
|
96 |
+
yield batch_masks
|
97 |
+
|
98 |
+
#masks.append(batch_masks)
|
99 |
+
|
100 |
+
#if len(masks) >= 1:
|
101 |
+
# masks = np.concatenate(masks, axis=0)
|
102 |
+
# masks = np.repeat(np.expand_dims(masks, axis=1), 3, axis=1)
|
103 |
+
|
104 |
+
# for i, mask in enumerate(masks):
|
105 |
+
# cv2.imwrite(f"mask/{i}.jpg", (mask * 255).astype("uint8"))
|
106 |
+
|
107 |
+
#return masks
|
face_parsing/resnet.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python
|
2 |
+
# -*- encoding: utf-8 -*-
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import torch.utils.model_zoo as modelzoo
|
8 |
+
|
9 |
+
# from modules.bn import InPlaceABNSync as BatchNorm2d
|
10 |
+
|
11 |
+
resnet18_url = 'https://download.pytorch.org/models/resnet18-5c106cde.pth'
|
12 |
+
|
13 |
+
|
14 |
+
def conv3x3(in_planes, out_planes, stride=1):
|
15 |
+
"""3x3 convolution with padding"""
|
16 |
+
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
17 |
+
padding=1, bias=False)
|
18 |
+
|
19 |
+
|
20 |
+
class BasicBlock(nn.Module):
|
21 |
+
def __init__(self, in_chan, out_chan, stride=1):
|
22 |
+
super(BasicBlock, self).__init__()
|
23 |
+
self.conv1 = conv3x3(in_chan, out_chan, stride)
|
24 |
+
self.bn1 = nn.BatchNorm2d(out_chan)
|
25 |
+
self.conv2 = conv3x3(out_chan, out_chan)
|
26 |
+
self.bn2 = nn.BatchNorm2d(out_chan)
|
27 |
+
self.relu = nn.ReLU(inplace=True)
|
28 |
+
self.downsample = None
|
29 |
+
if in_chan != out_chan or stride != 1:
|
30 |
+
self.downsample = nn.Sequential(
|
31 |
+
nn.Conv2d(in_chan, out_chan,
|
32 |
+
kernel_size=1, stride=stride, bias=False),
|
33 |
+
nn.BatchNorm2d(out_chan),
|
34 |
+
)
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
residual = self.conv1(x)
|
38 |
+
residual = F.relu(self.bn1(residual))
|
39 |
+
residual = self.conv2(residual)
|
40 |
+
residual = self.bn2(residual)
|
41 |
+
|
42 |
+
shortcut = x
|
43 |
+
if self.downsample is not None:
|
44 |
+
shortcut = self.downsample(x)
|
45 |
+
|
46 |
+
out = shortcut + residual
|
47 |
+
out = self.relu(out)
|
48 |
+
return out
|
49 |
+
|
50 |
+
|
51 |
+
def create_layer_basic(in_chan, out_chan, bnum, stride=1):
|
52 |
+
layers = [BasicBlock(in_chan, out_chan, stride=stride)]
|
53 |
+
for i in range(bnum-1):
|
54 |
+
layers.append(BasicBlock(out_chan, out_chan, stride=1))
|
55 |
+
return nn.Sequential(*layers)
|
56 |
+
|
57 |
+
|
58 |
+
class Resnet18(nn.Module):
|
59 |
+
def __init__(self):
|
60 |
+
super(Resnet18, self).__init__()
|
61 |
+
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
|
62 |
+
bias=False)
|
63 |
+
self.bn1 = nn.BatchNorm2d(64)
|
64 |
+
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
65 |
+
self.layer1 = create_layer_basic(64, 64, bnum=2, stride=1)
|
66 |
+
self.layer2 = create_layer_basic(64, 128, bnum=2, stride=2)
|
67 |
+
self.layer3 = create_layer_basic(128, 256, bnum=2, stride=2)
|
68 |
+
self.layer4 = create_layer_basic(256, 512, bnum=2, stride=2)
|
69 |
+
self.init_weight()
|
70 |
+
|
71 |
+
def forward(self, x):
|
72 |
+
x = self.conv1(x)
|
73 |
+
x = F.relu(self.bn1(x))
|
74 |
+
x = self.maxpool(x)
|
75 |
+
|
76 |
+
x = self.layer1(x)
|
77 |
+
feat8 = self.layer2(x) # 1/8
|
78 |
+
feat16 = self.layer3(feat8) # 1/16
|
79 |
+
feat32 = self.layer4(feat16) # 1/32
|
80 |
+
return feat8, feat16, feat32
|
81 |
+
|
82 |
+
def init_weight(self):
|
83 |
+
state_dict = modelzoo.load_url(resnet18_url)
|
84 |
+
self_state_dict = self.state_dict()
|
85 |
+
for k, v in state_dict.items():
|
86 |
+
if 'fc' in k: continue
|
87 |
+
self_state_dict.update({k: v})
|
88 |
+
self.load_state_dict(self_state_dict)
|
89 |
+
|
90 |
+
def get_params(self):
|
91 |
+
wd_params, nowd_params = [], []
|
92 |
+
for name, module in self.named_modules():
|
93 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
94 |
+
wd_params.append(module.weight)
|
95 |
+
if not module.bias is None:
|
96 |
+
nowd_params.append(module.bias)
|
97 |
+
elif isinstance(module, nn.BatchNorm2d):
|
98 |
+
nowd_params += list(module.parameters())
|
99 |
+
return wd_params, nowd_params
|
100 |
+
|
101 |
+
|
102 |
+
if __name__ == "__main__":
|
103 |
+
net = Resnet18()
|
104 |
+
x = torch.randn(16, 3, 224, 224)
|
105 |
+
out = net(x)
|
106 |
+
print(out[0].size())
|
107 |
+
print(out[1].size())
|
108 |
+
print(out[2].size())
|
109 |
+
net.get_params()
|
face_parsing/swap.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import torchvision.transforms as transforms
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
from .model import BiSeNet
|
9 |
+
|
10 |
+
mask_regions = {
|
11 |
+
"Background":0,
|
12 |
+
"Skin":1,
|
13 |
+
"L-Eyebrow":2,
|
14 |
+
"R-Eyebrow":3,
|
15 |
+
"L-Eye":4,
|
16 |
+
"R-Eye":5,
|
17 |
+
"Eye-G":6,
|
18 |
+
"L-Ear":7,
|
19 |
+
"R-Ear":8,
|
20 |
+
"Ear-R":9,
|
21 |
+
"Nose":10,
|
22 |
+
"Mouth":11,
|
23 |
+
"U-Lip":12,
|
24 |
+
"L-Lip":13,
|
25 |
+
"Neck":14,
|
26 |
+
"Neck-L":15,
|
27 |
+
"Cloth":16,
|
28 |
+
"Hair":17,
|
29 |
+
"Hat":18
|
30 |
+
}
|
31 |
+
|
32 |
+
# Borrowed from simswap
|
33 |
+
# https://github.com/neuralchen/SimSwap/blob/26c84d2901bd56eda4d5e3c5ca6da16e65dc82a6/util/reverse2original.py#L30
|
34 |
+
class SoftErosion(nn.Module):
|
35 |
+
def __init__(self, kernel_size=15, threshold=0.6, iterations=1):
|
36 |
+
super(SoftErosion, self).__init__()
|
37 |
+
r = kernel_size // 2
|
38 |
+
self.padding = r
|
39 |
+
self.iterations = iterations
|
40 |
+
self.threshold = threshold
|
41 |
+
|
42 |
+
# Create kernel
|
43 |
+
y_indices, x_indices = torch.meshgrid(torch.arange(0., kernel_size), torch.arange(0., kernel_size))
|
44 |
+
dist = torch.sqrt((x_indices - r) ** 2 + (y_indices - r) ** 2)
|
45 |
+
kernel = dist.max() - dist
|
46 |
+
kernel /= kernel.sum()
|
47 |
+
kernel = kernel.view(1, 1, *kernel.shape)
|
48 |
+
self.register_buffer('weight', kernel)
|
49 |
+
|
50 |
+
def forward(self, x):
|
51 |
+
x = x.float()
|
52 |
+
for i in range(self.iterations - 1):
|
53 |
+
x = torch.min(x, F.conv2d(x, weight=self.weight, groups=x.shape[1], padding=self.padding))
|
54 |
+
x = F.conv2d(x, weight=self.weight, groups=x.shape[1], padding=self.padding)
|
55 |
+
|
56 |
+
mask = x >= self.threshold
|
57 |
+
x[mask] = 1.0
|
58 |
+
x[~mask] /= x[~mask].max()
|
59 |
+
|
60 |
+
return x, mask
|
61 |
+
|
62 |
+
device = "cpu"
|
63 |
+
|
64 |
+
def init_parser(pth_path, mode="cpu"):
|
65 |
+
global device
|
66 |
+
device = mode
|
67 |
+
n_classes = 19
|
68 |
+
net = BiSeNet(n_classes=n_classes)
|
69 |
+
if device == "cuda":
|
70 |
+
net.cuda()
|
71 |
+
net.load_state_dict(torch.load(pth_path))
|
72 |
+
else:
|
73 |
+
net.load_state_dict(torch.load(pth_path, map_location=torch.device('cpu')))
|
74 |
+
net.eval()
|
75 |
+
return net
|
76 |
+
|
77 |
+
|
78 |
+
def image_to_parsing(img, net):
|
79 |
+
img = cv2.resize(img, (512, 512))
|
80 |
+
img = img[:,:,::-1]
|
81 |
+
transform = transforms.Compose([
|
82 |
+
transforms.ToTensor(),
|
83 |
+
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
|
84 |
+
])
|
85 |
+
img = transform(img.copy())
|
86 |
+
img = torch.unsqueeze(img, 0)
|
87 |
+
|
88 |
+
with torch.no_grad():
|
89 |
+
img = img.to(device)
|
90 |
+
out = net(img)[0]
|
91 |
+
parsing = out.squeeze(0).cpu().numpy().argmax(0)
|
92 |
+
return parsing
|
93 |
+
|
94 |
+
|
95 |
+
def get_mask(parsing, classes):
|
96 |
+
res = parsing == classes[0]
|
97 |
+
for val in classes[1:]:
|
98 |
+
res += parsing == val
|
99 |
+
return res
|
100 |
+
|
101 |
+
|
102 |
+
def swap_regions(source, target, net, smooth_mask, includes=[1,2,3,4,5,10,11,12,13], blur=10):
|
103 |
+
parsing = image_to_parsing(source, net)
|
104 |
+
|
105 |
+
if len(includes) == 0:
|
106 |
+
return source, np.zeros_like(source)
|
107 |
+
|
108 |
+
include_mask = get_mask(parsing, includes)
|
109 |
+
mask = np.repeat(include_mask[:, :, np.newaxis], 3, axis=2).astype("float32")
|
110 |
+
|
111 |
+
if smooth_mask is not None:
|
112 |
+
mask_tensor = torch.from_numpy(mask.copy().transpose((2, 0, 1))).float().to(device)
|
113 |
+
face_mask_tensor = mask_tensor[0] + mask_tensor[1]
|
114 |
+
soft_face_mask_tensor, _ = smooth_mask(face_mask_tensor.unsqueeze_(0).unsqueeze_(0))
|
115 |
+
soft_face_mask_tensor.squeeze_()
|
116 |
+
mask = np.repeat(soft_face_mask_tensor.cpu().numpy()[:, :, np.newaxis], 3, axis=2)
|
117 |
+
|
118 |
+
if blur > 0:
|
119 |
+
mask = cv2.GaussianBlur(mask, (0, 0), blur)
|
120 |
+
|
121 |
+
resized_source = cv2.resize((source).astype("float32"), (512, 512))
|
122 |
+
resized_target = cv2.resize((target).astype("float32"), (512, 512))
|
123 |
+
result = mask * resized_source + (1 - mask) * resized_target
|
124 |
+
result = cv2.resize(result.astype("uint8"), (source.shape[1], source.shape[0]))
|
125 |
+
|
126 |
+
return result
|
127 |
+
|
128 |
+
def mask_regions_to_list(values):
|
129 |
+
out_ids = []
|
130 |
+
for value in values:
|
131 |
+
if value in mask_regions.keys():
|
132 |
+
out_ids.append(mask_regions.get(value))
|
133 |
+
return out_ids
|
face_swapper.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import torch
|
3 |
+
import onnx
|
4 |
+
import cv2
|
5 |
+
import onnxruntime
|
6 |
+
import numpy as np
|
7 |
+
from tqdm import tqdm
|
8 |
+
import torch.nn as nn
|
9 |
+
from onnx import numpy_helper
|
10 |
+
from skimage import transform as trans
|
11 |
+
import torchvision.transforms.functional as F
|
12 |
+
import torch.nn.functional as F
|
13 |
+
from utils import mask_crop, laplacian_blending
|
14 |
+
|
15 |
+
|
16 |
+
arcface_dst = np.array(
|
17 |
+
[[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366],
|
18 |
+
[41.5493, 92.3655], [70.7299, 92.2041]],
|
19 |
+
dtype=np.float32)
|
20 |
+
|
21 |
+
def estimate_norm(lmk, image_size=112, mode='arcface'):
|
22 |
+
assert lmk.shape == (5, 2)
|
23 |
+
assert image_size % 112 == 0 or image_size % 128 == 0
|
24 |
+
if image_size % 112 == 0:
|
25 |
+
ratio = float(image_size) / 112.0
|
26 |
+
diff_x = 0
|
27 |
+
else:
|
28 |
+
ratio = float(image_size) / 128.0
|
29 |
+
diff_x = 8.0 * ratio
|
30 |
+
dst = arcface_dst * ratio
|
31 |
+
dst[:, 0] += diff_x
|
32 |
+
tform = trans.SimilarityTransform()
|
33 |
+
tform.estimate(lmk, dst)
|
34 |
+
M = tform.params[0:2, :]
|
35 |
+
return M
|
36 |
+
|
37 |
+
|
38 |
+
def norm_crop2(img, landmark, image_size=112, mode='arcface'):
|
39 |
+
M = estimate_norm(landmark, image_size, mode)
|
40 |
+
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
|
41 |
+
return warped, M
|
42 |
+
|
43 |
+
|
44 |
+
class Inswapper():
|
45 |
+
def __init__(self, model_file=None, batch_size=32, providers=['CPUExecutionProvider']):
|
46 |
+
self.model_file = model_file
|
47 |
+
self.batch_size = batch_size
|
48 |
+
|
49 |
+
model = onnx.load(self.model_file)
|
50 |
+
graph = model.graph
|
51 |
+
self.emap = numpy_helper.to_array(graph.initializer[-1])
|
52 |
+
|
53 |
+
self.session_options = onnxruntime.SessionOptions()
|
54 |
+
self.session = onnxruntime.InferenceSession(self.model_file, sess_options=self.session_options, providers=providers)
|
55 |
+
|
56 |
+
def forward(self, imgs, latents):
|
57 |
+
preds = []
|
58 |
+
for img, latent in zip(imgs, latents):
|
59 |
+
img = img / 255
|
60 |
+
pred = self.session.run(['output'], {'target': img, 'source': latent})[0]
|
61 |
+
preds.append(pred)
|
62 |
+
|
63 |
+
def get(self, imgs, target_faces, source_faces):
|
64 |
+
imgs = list(imgs)
|
65 |
+
|
66 |
+
preds = [None] * len(imgs)
|
67 |
+
matrs = [None] * len(imgs)
|
68 |
+
|
69 |
+
for idx, (img, target_face, source_face) in enumerate(zip(imgs, target_faces, source_faces)):
|
70 |
+
matrix, blob, latent = self.prepare_data(img, target_face, source_face)
|
71 |
+
pred = self.session.run(['output'], {'target': blob, 'source': latent})[0]
|
72 |
+
pred = pred.transpose((0, 2, 3, 1))[0]
|
73 |
+
pred = np.clip(255 * pred, 0, 255).astype(np.uint8)[:, :, ::-1]
|
74 |
+
|
75 |
+
preds[idx] = pred
|
76 |
+
matrs[idx] = matrix
|
77 |
+
|
78 |
+
return (preds, matrs)
|
79 |
+
|
80 |
+
def prepare_data(self, img, target_face, source_face):
|
81 |
+
if isinstance(img, str):
|
82 |
+
img = cv2.imread(img)
|
83 |
+
|
84 |
+
aligned_img, matrix = norm_crop2(img, target_face.kps, 128)
|
85 |
+
|
86 |
+
blob = cv2.dnn.blobFromImage(aligned_img, 1.0 / 255, (128, 128), (0., 0., 0.), swapRB=True)
|
87 |
+
|
88 |
+
latent = source_face.normed_embedding.reshape((1, -1))
|
89 |
+
latent = np.dot(latent, self.emap)
|
90 |
+
latent /= np.linalg.norm(latent)
|
91 |
+
|
92 |
+
return (matrix, blob, latent)
|
93 |
+
|
94 |
+
def batch_forward(self, img_list, target_f_list, source_f_list):
|
95 |
+
num_samples = len(img_list)
|
96 |
+
num_batches = (num_samples + self.batch_size - 1) // self.batch_size
|
97 |
+
|
98 |
+
for i in tqdm(range(num_batches), desc="Generating face"):
|
99 |
+
start_idx = i * self.batch_size
|
100 |
+
end_idx = min((i + 1) * self.batch_size, num_samples)
|
101 |
+
|
102 |
+
batch_img = img_list[start_idx:end_idx]
|
103 |
+
batch_target_f = target_f_list[start_idx:end_idx]
|
104 |
+
batch_source_f = source_f_list[start_idx:end_idx]
|
105 |
+
|
106 |
+
batch_pred, batch_matr = self.get(batch_img, batch_target_f, batch_source_f)
|
107 |
+
|
108 |
+
yield batch_pred, batch_matr
|
109 |
+
|
110 |
+
|
111 |
+
def paste_to_whole(foreground, background, matrix, mask=None, crop_mask=(0,0,0,0), blur_amount=0.1, erode_amount = 0.15, blend_method='linear'):
|
112 |
+
inv_matrix = cv2.invertAffineTransform(matrix)
|
113 |
+
fg_shape = foreground.shape[:2]
|
114 |
+
bg_shape = (background.shape[1], background.shape[0])
|
115 |
+
foreground = cv2.warpAffine(foreground, inv_matrix, bg_shape, borderValue=0.0)
|
116 |
+
|
117 |
+
if mask is None:
|
118 |
+
mask = np.full(fg_shape, 1., dtype=np.float32)
|
119 |
+
mask = mask_crop(mask, crop_mask)
|
120 |
+
mask = cv2.warpAffine(mask, inv_matrix, bg_shape, borderValue=0.0)
|
121 |
+
else:
|
122 |
+
assert fg_shape == mask.shape[:2], "foreground & mask shape mismatch!"
|
123 |
+
mask = mask_crop(mask, crop_mask).astype('float32')
|
124 |
+
mask = cv2.warpAffine(mask, inv_matrix, (background.shape[1], background.shape[0]), borderValue=0.0)
|
125 |
+
|
126 |
+
_mask = mask.copy()
|
127 |
+
_mask[_mask > 0.05] = 1.
|
128 |
+
non_zero_points = cv2.findNonZero(_mask)
|
129 |
+
_, _, w, h = cv2.boundingRect(non_zero_points)
|
130 |
+
mask_size = int(np.sqrt(w * h))
|
131 |
+
|
132 |
+
if erode_amount > 0:
|
133 |
+
kernel_size = max(int(mask_size * erode_amount), 1)
|
134 |
+
structuring_element = cv2.getStructuringElement(cv2.MORPH_RECT, (kernel_size, kernel_size))
|
135 |
+
mask = cv2.erode(mask, structuring_element)
|
136 |
+
|
137 |
+
if blur_amount > 0:
|
138 |
+
kernel_size = max(int(mask_size * blur_amount), 3)
|
139 |
+
if kernel_size % 2 == 0:
|
140 |
+
kernel_size += 1
|
141 |
+
mask = cv2.GaussianBlur(mask, (kernel_size, kernel_size), 0)
|
142 |
+
|
143 |
+
mask = np.tile(np.expand_dims(mask, axis=-1), (1, 1, 3))
|
144 |
+
|
145 |
+
if blend_method == 'laplacian':
|
146 |
+
composite_image = laplacian_blending(foreground, background, mask.clip(0,1), num_levels=4)
|
147 |
+
else:
|
148 |
+
composite_image = mask * foreground + (1 - mask) * background
|
149 |
+
|
150 |
+
return composite_image.astype("uint8").clip(0, 255)
|
gfpgan/weights/detection_Resnet50_Final.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d1de9c2944f2ccddca5f5e010ea5ae64a39845a86311af6fdf30841b0a5a16d
|
3 |
+
size 109497761
|
gfpgan/weights/parsing_parsenet.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d558d8d0e42c20224f13cf5a29c79eba2d59913419f945545d8cf7b72920de2
|
3 |
+
size 85331193
|
requirements.txt
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/cu118
|
2 |
+
|
3 |
+
gfpgan==1.3.8
|
4 |
+
gradio==3.40.1
|
5 |
+
insightface==0.7.3
|
6 |
+
moviepy>=1.0.3
|
7 |
+
numpy==1.24.3
|
8 |
+
onnx==1.14.0
|
9 |
+
onnxruntime==1.15.1; python_version != '3.9' and sys_platform == 'darwin' and platform_machine != 'arm64'
|
10 |
+
onnxruntime-coreml==1.13.1; python_version == '3.9' and sys_platform == 'darwin' and platform_machine != 'arm64'
|
11 |
+
onnxruntime-gpu==1.15.1; sys_platform != 'darwin'
|
12 |
+
onnxruntime-silicon==1.13.1; sys_platform == 'darwin' and platform_machine == 'arm64'
|
13 |
+
opencv-python==4.8.0.74
|
14 |
+
opennsfw2==0.10.2
|
15 |
+
pillow==10.0.0
|
16 |
+
protobuf==4.23.4
|
17 |
+
psutil==5.9.5
|
18 |
+
realesrgan==0.3.0
|
19 |
+
tensorflow==2.13.0
|
20 |
+
tqdm==4.65.0
|
21 |
+
|
upscaler/RealESRGAN/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .model import RealESRGAN
|
upscaler/RealESRGAN/arch_utils.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn as nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
from torch.nn import init as init
|
6 |
+
from torch.nn.modules.batchnorm import _BatchNorm
|
7 |
+
|
8 |
+
@torch.no_grad()
|
9 |
+
def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs):
|
10 |
+
"""Initialize network weights.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
module_list (list[nn.Module] | nn.Module): Modules to be initialized.
|
14 |
+
scale (float): Scale initialized weights, especially for residual
|
15 |
+
blocks. Default: 1.
|
16 |
+
bias_fill (float): The value to fill bias. Default: 0
|
17 |
+
kwargs (dict): Other arguments for initialization function.
|
18 |
+
"""
|
19 |
+
if not isinstance(module_list, list):
|
20 |
+
module_list = [module_list]
|
21 |
+
for module in module_list:
|
22 |
+
for m in module.modules():
|
23 |
+
if isinstance(m, nn.Conv2d):
|
24 |
+
init.kaiming_normal_(m.weight, **kwargs)
|
25 |
+
m.weight.data *= scale
|
26 |
+
if m.bias is not None:
|
27 |
+
m.bias.data.fill_(bias_fill)
|
28 |
+
elif isinstance(m, nn.Linear):
|
29 |
+
init.kaiming_normal_(m.weight, **kwargs)
|
30 |
+
m.weight.data *= scale
|
31 |
+
if m.bias is not None:
|
32 |
+
m.bias.data.fill_(bias_fill)
|
33 |
+
elif isinstance(m, _BatchNorm):
|
34 |
+
init.constant_(m.weight, 1)
|
35 |
+
if m.bias is not None:
|
36 |
+
m.bias.data.fill_(bias_fill)
|
37 |
+
|
38 |
+
|
39 |
+
def make_layer(basic_block, num_basic_block, **kwarg):
|
40 |
+
"""Make layers by stacking the same blocks.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
basic_block (nn.module): nn.module class for basic block.
|
44 |
+
num_basic_block (int): number of blocks.
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
nn.Sequential: Stacked blocks in nn.Sequential.
|
48 |
+
"""
|
49 |
+
layers = []
|
50 |
+
for _ in range(num_basic_block):
|
51 |
+
layers.append(basic_block(**kwarg))
|
52 |
+
return nn.Sequential(*layers)
|
53 |
+
|
54 |
+
|
55 |
+
class ResidualBlockNoBN(nn.Module):
|
56 |
+
"""Residual block without BN.
|
57 |
+
|
58 |
+
It has a style of:
|
59 |
+
---Conv-ReLU-Conv-+-
|
60 |
+
|________________|
|
61 |
+
|
62 |
+
Args:
|
63 |
+
num_feat (int): Channel number of intermediate features.
|
64 |
+
Default: 64.
|
65 |
+
res_scale (float): Residual scale. Default: 1.
|
66 |
+
pytorch_init (bool): If set to True, use pytorch default init,
|
67 |
+
otherwise, use default_init_weights. Default: False.
|
68 |
+
"""
|
69 |
+
|
70 |
+
def __init__(self, num_feat=64, res_scale=1, pytorch_init=False):
|
71 |
+
super(ResidualBlockNoBN, self).__init__()
|
72 |
+
self.res_scale = res_scale
|
73 |
+
self.conv1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
|
74 |
+
self.conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
|
75 |
+
self.relu = nn.ReLU(inplace=True)
|
76 |
+
|
77 |
+
if not pytorch_init:
|
78 |
+
default_init_weights([self.conv1, self.conv2], 0.1)
|
79 |
+
|
80 |
+
def forward(self, x):
|
81 |
+
identity = x
|
82 |
+
out = self.conv2(self.relu(self.conv1(x)))
|
83 |
+
return identity + out * self.res_scale
|
84 |
+
|
85 |
+
|
86 |
+
class Upsample(nn.Sequential):
|
87 |
+
"""Upsample module.
|
88 |
+
|
89 |
+
Args:
|
90 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
91 |
+
num_feat (int): Channel number of intermediate features.
|
92 |
+
"""
|
93 |
+
|
94 |
+
def __init__(self, scale, num_feat):
|
95 |
+
m = []
|
96 |
+
if (scale & (scale - 1)) == 0: # scale = 2^n
|
97 |
+
for _ in range(int(math.log(scale, 2))):
|
98 |
+
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
99 |
+
m.append(nn.PixelShuffle(2))
|
100 |
+
elif scale == 3:
|
101 |
+
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
102 |
+
m.append(nn.PixelShuffle(3))
|
103 |
+
else:
|
104 |
+
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
|
105 |
+
super(Upsample, self).__init__(*m)
|
106 |
+
|
107 |
+
|
108 |
+
def flow_warp(x, flow, interp_mode='bilinear', padding_mode='zeros', align_corners=True):
|
109 |
+
"""Warp an image or feature map with optical flow.
|
110 |
+
|
111 |
+
Args:
|
112 |
+
x (Tensor): Tensor with size (n, c, h, w).
|
113 |
+
flow (Tensor): Tensor with size (n, h, w, 2), normal value.
|
114 |
+
interp_mode (str): 'nearest' or 'bilinear'. Default: 'bilinear'.
|
115 |
+
padding_mode (str): 'zeros' or 'border' or 'reflection'.
|
116 |
+
Default: 'zeros'.
|
117 |
+
align_corners (bool): Before pytorch 1.3, the default value is
|
118 |
+
align_corners=True. After pytorch 1.3, the default value is
|
119 |
+
align_corners=False. Here, we use the True as default.
|
120 |
+
|
121 |
+
Returns:
|
122 |
+
Tensor: Warped image or feature map.
|
123 |
+
"""
|
124 |
+
assert x.size()[-2:] == flow.size()[1:3]
|
125 |
+
_, _, h, w = x.size()
|
126 |
+
# create mesh grid
|
127 |
+
grid_y, grid_x = torch.meshgrid(torch.arange(0, h).type_as(x), torch.arange(0, w).type_as(x))
|
128 |
+
grid = torch.stack((grid_x, grid_y), 2).float() # W(x), H(y), 2
|
129 |
+
grid.requires_grad = False
|
130 |
+
|
131 |
+
vgrid = grid + flow
|
132 |
+
# scale grid to [-1,1]
|
133 |
+
vgrid_x = 2.0 * vgrid[:, :, :, 0] / max(w - 1, 1) - 1.0
|
134 |
+
vgrid_y = 2.0 * vgrid[:, :, :, 1] / max(h - 1, 1) - 1.0
|
135 |
+
vgrid_scaled = torch.stack((vgrid_x, vgrid_y), dim=3)
|
136 |
+
output = F.grid_sample(x, vgrid_scaled, mode=interp_mode, padding_mode=padding_mode, align_corners=align_corners)
|
137 |
+
|
138 |
+
# TODO, what if align_corners=False
|
139 |
+
return output
|
140 |
+
|
141 |
+
|
142 |
+
def resize_flow(flow, size_type, sizes, interp_mode='bilinear', align_corners=False):
|
143 |
+
"""Resize a flow according to ratio or shape.
|
144 |
+
|
145 |
+
Args:
|
146 |
+
flow (Tensor): Precomputed flow. shape [N, 2, H, W].
|
147 |
+
size_type (str): 'ratio' or 'shape'.
|
148 |
+
sizes (list[int | float]): the ratio for resizing or the final output
|
149 |
+
shape.
|
150 |
+
1) The order of ratio should be [ratio_h, ratio_w]. For
|
151 |
+
downsampling, the ratio should be smaller than 1.0 (i.e., ratio
|
152 |
+
< 1.0). For upsampling, the ratio should be larger than 1.0 (i.e.,
|
153 |
+
ratio > 1.0).
|
154 |
+
2) The order of output_size should be [out_h, out_w].
|
155 |
+
interp_mode (str): The mode of interpolation for resizing.
|
156 |
+
Default: 'bilinear'.
|
157 |
+
align_corners (bool): Whether align corners. Default: False.
|
158 |
+
|
159 |
+
Returns:
|
160 |
+
Tensor: Resized flow.
|
161 |
+
"""
|
162 |
+
_, _, flow_h, flow_w = flow.size()
|
163 |
+
if size_type == 'ratio':
|
164 |
+
output_h, output_w = int(flow_h * sizes[0]), int(flow_w * sizes[1])
|
165 |
+
elif size_type == 'shape':
|
166 |
+
output_h, output_w = sizes[0], sizes[1]
|
167 |
+
else:
|
168 |
+
raise ValueError(f'Size type should be ratio or shape, but got type {size_type}.')
|
169 |
+
|
170 |
+
input_flow = flow.clone()
|
171 |
+
ratio_h = output_h / flow_h
|
172 |
+
ratio_w = output_w / flow_w
|
173 |
+
input_flow[:, 0, :, :] *= ratio_w
|
174 |
+
input_flow[:, 1, :, :] *= ratio_h
|
175 |
+
resized_flow = F.interpolate(
|
176 |
+
input=input_flow, size=(output_h, output_w), mode=interp_mode, align_corners=align_corners)
|
177 |
+
return resized_flow
|
178 |
+
|
179 |
+
|
180 |
+
# TODO: may write a cpp file
|
181 |
+
def pixel_unshuffle(x, scale):
|
182 |
+
""" Pixel unshuffle.
|
183 |
+
|
184 |
+
Args:
|
185 |
+
x (Tensor): Input feature with shape (b, c, hh, hw).
|
186 |
+
scale (int): Downsample ratio.
|
187 |
+
|
188 |
+
Returns:
|
189 |
+
Tensor: the pixel unshuffled feature.
|
190 |
+
"""
|
191 |
+
b, c, hh, hw = x.size()
|
192 |
+
out_channel = c * (scale**2)
|
193 |
+
assert hh % scale == 0 and hw % scale == 0
|
194 |
+
h = hh // scale
|
195 |
+
w = hw // scale
|
196 |
+
x_view = x.view(b, c, h, scale, w, scale)
|
197 |
+
return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w)
|
upscaler/RealESRGAN/model.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from torch.nn import functional as F
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
import cv2
|
7 |
+
|
8 |
+
from .rrdbnet_arch import RRDBNet
|
9 |
+
from .utils import pad_reflect, split_image_into_overlapping_patches, stich_together, \
|
10 |
+
unpad_image
|
11 |
+
|
12 |
+
|
13 |
+
HF_MODELS = {
|
14 |
+
2: dict(
|
15 |
+
repo_id='sberbank-ai/Real-ESRGAN',
|
16 |
+
filename='RealESRGAN_x2.pth',
|
17 |
+
),
|
18 |
+
4: dict(
|
19 |
+
repo_id='sberbank-ai/Real-ESRGAN',
|
20 |
+
filename='RealESRGAN_x4.pth',
|
21 |
+
),
|
22 |
+
8: dict(
|
23 |
+
repo_id='sberbank-ai/Real-ESRGAN',
|
24 |
+
filename='RealESRGAN_x8.pth',
|
25 |
+
),
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
class RealESRGAN:
|
30 |
+
def __init__(self, device, scale=4):
|
31 |
+
self.device = device
|
32 |
+
self.scale = scale
|
33 |
+
self.model = RRDBNet(
|
34 |
+
num_in_ch=3, num_out_ch=3, num_feat=64,
|
35 |
+
num_block=23, num_grow_ch=32, scale=scale
|
36 |
+
)
|
37 |
+
|
38 |
+
def load_weights(self, model_path, download=True):
|
39 |
+
if not os.path.exists(model_path) and download:
|
40 |
+
from huggingface_hub import hf_hub_url, cached_download
|
41 |
+
assert self.scale in [2,4,8], 'You can download models only with scales: 2, 4, 8'
|
42 |
+
config = HF_MODELS[self.scale]
|
43 |
+
cache_dir = os.path.dirname(model_path)
|
44 |
+
local_filename = os.path.basename(model_path)
|
45 |
+
config_file_url = hf_hub_url(repo_id=config['repo_id'], filename=config['filename'])
|
46 |
+
cached_download(config_file_url, cache_dir=cache_dir, force_filename=local_filename)
|
47 |
+
print('Weights downloaded to:', os.path.join(cache_dir, local_filename))
|
48 |
+
|
49 |
+
loadnet = torch.load(model_path)
|
50 |
+
if 'params' in loadnet:
|
51 |
+
self.model.load_state_dict(loadnet['params'], strict=True)
|
52 |
+
elif 'params_ema' in loadnet:
|
53 |
+
self.model.load_state_dict(loadnet['params_ema'], strict=True)
|
54 |
+
else:
|
55 |
+
self.model.load_state_dict(loadnet, strict=True)
|
56 |
+
self.model.eval()
|
57 |
+
self.model.to(self.device)
|
58 |
+
|
59 |
+
@torch.cuda.amp.autocast()
|
60 |
+
def predict(self, lr_image, batch_size=4, patches_size=192,
|
61 |
+
padding=24, pad_size=15):
|
62 |
+
scale = self.scale
|
63 |
+
device = self.device
|
64 |
+
lr_image = np.array(lr_image)
|
65 |
+
lr_image = pad_reflect(lr_image, pad_size)
|
66 |
+
|
67 |
+
patches, p_shape = split_image_into_overlapping_patches(
|
68 |
+
lr_image, patch_size=patches_size, padding_size=padding
|
69 |
+
)
|
70 |
+
img = torch.FloatTensor(patches/255).permute((0,3,1,2)).to(device).detach()
|
71 |
+
|
72 |
+
with torch.no_grad():
|
73 |
+
res = self.model(img[0:batch_size])
|
74 |
+
for i in range(batch_size, img.shape[0], batch_size):
|
75 |
+
res = torch.cat((res, self.model(img[i:i+batch_size])), 0)
|
76 |
+
|
77 |
+
sr_image = res.permute((0,2,3,1)).clamp_(0, 1).cpu()
|
78 |
+
np_sr_image = sr_image.numpy()
|
79 |
+
|
80 |
+
padded_size_scaled = tuple(np.multiply(p_shape[0:2], scale)) + (3,)
|
81 |
+
scaled_image_shape = tuple(np.multiply(lr_image.shape[0:2], scale)) + (3,)
|
82 |
+
np_sr_image = stich_together(
|
83 |
+
np_sr_image, padded_image_shape=padded_size_scaled,
|
84 |
+
target_shape=scaled_image_shape, padding_size=padding * scale
|
85 |
+
)
|
86 |
+
sr_img = (np_sr_image*255).astype(np.uint8)
|
87 |
+
sr_img = unpad_image(sr_img, pad_size*scale)
|
88 |
+
#sr_img = Image.fromarray(sr_img)
|
89 |
+
|
90 |
+
return sr_img
|
upscaler/RealESRGAN/rrdbnet_arch.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn as nn
|
3 |
+
from torch.nn import functional as F
|
4 |
+
|
5 |
+
from .arch_utils import default_init_weights, make_layer, pixel_unshuffle
|
6 |
+
|
7 |
+
|
8 |
+
class ResidualDenseBlock(nn.Module):
|
9 |
+
"""Residual Dense Block.
|
10 |
+
|
11 |
+
Used in RRDB block in ESRGAN.
|
12 |
+
|
13 |
+
Args:
|
14 |
+
num_feat (int): Channel number of intermediate features.
|
15 |
+
num_grow_ch (int): Channels for each growth.
|
16 |
+
"""
|
17 |
+
|
18 |
+
def __init__(self, num_feat=64, num_grow_ch=32):
|
19 |
+
super(ResidualDenseBlock, self).__init__()
|
20 |
+
self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1)
|
21 |
+
self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1)
|
22 |
+
self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1)
|
23 |
+
self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1)
|
24 |
+
self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1)
|
25 |
+
|
26 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
27 |
+
|
28 |
+
# initialization
|
29 |
+
default_init_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
|
30 |
+
|
31 |
+
def forward(self, x):
|
32 |
+
x1 = self.lrelu(self.conv1(x))
|
33 |
+
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
|
34 |
+
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
|
35 |
+
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
|
36 |
+
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
37 |
+
# Emperically, we use 0.2 to scale the residual for better performance
|
38 |
+
return x5 * 0.2 + x
|
39 |
+
|
40 |
+
|
41 |
+
class RRDB(nn.Module):
|
42 |
+
"""Residual in Residual Dense Block.
|
43 |
+
|
44 |
+
Used in RRDB-Net in ESRGAN.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
num_feat (int): Channel number of intermediate features.
|
48 |
+
num_grow_ch (int): Channels for each growth.
|
49 |
+
"""
|
50 |
+
|
51 |
+
def __init__(self, num_feat, num_grow_ch=32):
|
52 |
+
super(RRDB, self).__init__()
|
53 |
+
self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch)
|
54 |
+
self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch)
|
55 |
+
self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch)
|
56 |
+
|
57 |
+
def forward(self, x):
|
58 |
+
out = self.rdb1(x)
|
59 |
+
out = self.rdb2(out)
|
60 |
+
out = self.rdb3(out)
|
61 |
+
# Emperically, we use 0.2 to scale the residual for better performance
|
62 |
+
return out * 0.2 + x
|
63 |
+
|
64 |
+
|
65 |
+
class RRDBNet(nn.Module):
|
66 |
+
"""Networks consisting of Residual in Residual Dense Block, which is used
|
67 |
+
in ESRGAN.
|
68 |
+
|
69 |
+
ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks.
|
70 |
+
|
71 |
+
We extend ESRGAN for scale x2 and scale x1.
|
72 |
+
Note: This is one option for scale 1, scale 2 in RRDBNet.
|
73 |
+
We first employ the pixel-unshuffle (an inverse operation of pixelshuffle to reduce the spatial size
|
74 |
+
and enlarge the channel size before feeding inputs into the main ESRGAN architecture.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
num_in_ch (int): Channel number of inputs.
|
78 |
+
num_out_ch (int): Channel number of outputs.
|
79 |
+
num_feat (int): Channel number of intermediate features.
|
80 |
+
Default: 64
|
81 |
+
num_block (int): Block number in the trunk network. Defaults: 23
|
82 |
+
num_grow_ch (int): Channels for each growth. Default: 32.
|
83 |
+
"""
|
84 |
+
|
85 |
+
def __init__(self, num_in_ch, num_out_ch, scale=4, num_feat=64, num_block=23, num_grow_ch=32):
|
86 |
+
super(RRDBNet, self).__init__()
|
87 |
+
self.scale = scale
|
88 |
+
if scale == 2:
|
89 |
+
num_in_ch = num_in_ch * 4
|
90 |
+
elif scale == 1:
|
91 |
+
num_in_ch = num_in_ch * 16
|
92 |
+
self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
|
93 |
+
self.body = make_layer(RRDB, num_block, num_feat=num_feat, num_grow_ch=num_grow_ch)
|
94 |
+
self.conv_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
95 |
+
# upsample
|
96 |
+
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
97 |
+
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
98 |
+
if scale == 8:
|
99 |
+
self.conv_up3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
100 |
+
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
101 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
102 |
+
|
103 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
104 |
+
|
105 |
+
def forward(self, x):
|
106 |
+
if self.scale == 2:
|
107 |
+
feat = pixel_unshuffle(x, scale=2)
|
108 |
+
elif self.scale == 1:
|
109 |
+
feat = pixel_unshuffle(x, scale=4)
|
110 |
+
else:
|
111 |
+
feat = x
|
112 |
+
feat = self.conv_first(feat)
|
113 |
+
body_feat = self.conv_body(self.body(feat))
|
114 |
+
feat = feat + body_feat
|
115 |
+
# upsample
|
116 |
+
feat = self.lrelu(self.conv_up1(F.interpolate(feat, scale_factor=2, mode='nearest')))
|
117 |
+
feat = self.lrelu(self.conv_up2(F.interpolate(feat, scale_factor=2, mode='nearest')))
|
118 |
+
if self.scale == 8:
|
119 |
+
feat = self.lrelu(self.conv_up3(F.interpolate(feat, scale_factor=2, mode='nearest')))
|
120 |
+
out = self.conv_last(self.lrelu(self.conv_hr(feat)))
|
121 |
+
return out
|
upscaler/RealESRGAN/utils.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
import os
|
5 |
+
import io
|
6 |
+
|
7 |
+
def pad_reflect(image, pad_size):
|
8 |
+
imsize = image.shape
|
9 |
+
height, width = imsize[:2]
|
10 |
+
new_img = np.zeros([height+pad_size*2, width+pad_size*2, imsize[2]]).astype(np.uint8)
|
11 |
+
new_img[pad_size:-pad_size, pad_size:-pad_size, :] = image
|
12 |
+
|
13 |
+
new_img[0:pad_size, pad_size:-pad_size, :] = np.flip(image[0:pad_size, :, :], axis=0) #top
|
14 |
+
new_img[-pad_size:, pad_size:-pad_size, :] = np.flip(image[-pad_size:, :, :], axis=0) #bottom
|
15 |
+
new_img[:, 0:pad_size, :] = np.flip(new_img[:, pad_size:pad_size*2, :], axis=1) #left
|
16 |
+
new_img[:, -pad_size:, :] = np.flip(new_img[:, -pad_size*2:-pad_size, :], axis=1) #right
|
17 |
+
|
18 |
+
return new_img
|
19 |
+
|
20 |
+
def unpad_image(image, pad_size):
|
21 |
+
return image[pad_size:-pad_size, pad_size:-pad_size, :]
|
22 |
+
|
23 |
+
|
24 |
+
def process_array(image_array, expand=True):
|
25 |
+
""" Process a 3-dimensional array into a scaled, 4 dimensional batch of size 1. """
|
26 |
+
|
27 |
+
image_batch = image_array / 255.0
|
28 |
+
if expand:
|
29 |
+
image_batch = np.expand_dims(image_batch, axis=0)
|
30 |
+
return image_batch
|
31 |
+
|
32 |
+
|
33 |
+
def process_output(output_tensor):
|
34 |
+
""" Transforms the 4-dimensional output tensor into a suitable image format. """
|
35 |
+
|
36 |
+
sr_img = output_tensor.clip(0, 1) * 255
|
37 |
+
sr_img = np.uint8(sr_img)
|
38 |
+
return sr_img
|
39 |
+
|
40 |
+
|
41 |
+
def pad_patch(image_patch, padding_size, channel_last=True):
|
42 |
+
""" Pads image_patch with with padding_size edge values. """
|
43 |
+
|
44 |
+
if channel_last:
|
45 |
+
return np.pad(
|
46 |
+
image_patch,
|
47 |
+
((padding_size, padding_size), (padding_size, padding_size), (0, 0)),
|
48 |
+
'edge',
|
49 |
+
)
|
50 |
+
else:
|
51 |
+
return np.pad(
|
52 |
+
image_patch,
|
53 |
+
((0, 0), (padding_size, padding_size), (padding_size, padding_size)),
|
54 |
+
'edge',
|
55 |
+
)
|
56 |
+
|
57 |
+
|
58 |
+
def unpad_patches(image_patches, padding_size):
|
59 |
+
return image_patches[:, padding_size:-padding_size, padding_size:-padding_size, :]
|
60 |
+
|
61 |
+
|
62 |
+
def split_image_into_overlapping_patches(image_array, patch_size, padding_size=2):
|
63 |
+
""" Splits the image into partially overlapping patches.
|
64 |
+
The patches overlap by padding_size pixels.
|
65 |
+
Pads the image twice:
|
66 |
+
- first to have a size multiple of the patch size,
|
67 |
+
- then to have equal padding at the borders.
|
68 |
+
Args:
|
69 |
+
image_array: numpy array of the input image.
|
70 |
+
patch_size: size of the patches from the original image (without padding).
|
71 |
+
padding_size: size of the overlapping area.
|
72 |
+
"""
|
73 |
+
|
74 |
+
xmax, ymax, _ = image_array.shape
|
75 |
+
x_remainder = xmax % patch_size
|
76 |
+
y_remainder = ymax % patch_size
|
77 |
+
|
78 |
+
# modulo here is to avoid extending of patch_size instead of 0
|
79 |
+
x_extend = (patch_size - x_remainder) % patch_size
|
80 |
+
y_extend = (patch_size - y_remainder) % patch_size
|
81 |
+
|
82 |
+
# make sure the image is divisible into regular patches
|
83 |
+
extended_image = np.pad(image_array, ((0, x_extend), (0, y_extend), (0, 0)), 'edge')
|
84 |
+
|
85 |
+
# add padding around the image to simplify computations
|
86 |
+
padded_image = pad_patch(extended_image, padding_size, channel_last=True)
|
87 |
+
|
88 |
+
xmax, ymax, _ = padded_image.shape
|
89 |
+
patches = []
|
90 |
+
|
91 |
+
x_lefts = range(padding_size, xmax - padding_size, patch_size)
|
92 |
+
y_tops = range(padding_size, ymax - padding_size, patch_size)
|
93 |
+
|
94 |
+
for x in x_lefts:
|
95 |
+
for y in y_tops:
|
96 |
+
x_left = x - padding_size
|
97 |
+
y_top = y - padding_size
|
98 |
+
x_right = x + patch_size + padding_size
|
99 |
+
y_bottom = y + patch_size + padding_size
|
100 |
+
patch = padded_image[x_left:x_right, y_top:y_bottom, :]
|
101 |
+
patches.append(patch)
|
102 |
+
|
103 |
+
return np.array(patches), padded_image.shape
|
104 |
+
|
105 |
+
|
106 |
+
def stich_together(patches, padded_image_shape, target_shape, padding_size=4):
|
107 |
+
""" Reconstruct the image from overlapping patches.
|
108 |
+
After scaling, shapes and padding should be scaled too.
|
109 |
+
Args:
|
110 |
+
patches: patches obtained with split_image_into_overlapping_patches
|
111 |
+
padded_image_shape: shape of the padded image contructed in split_image_into_overlapping_patches
|
112 |
+
target_shape: shape of the final image
|
113 |
+
padding_size: size of the overlapping area.
|
114 |
+
"""
|
115 |
+
|
116 |
+
xmax, ymax, _ = padded_image_shape
|
117 |
+
patches = unpad_patches(patches, padding_size)
|
118 |
+
patch_size = patches.shape[1]
|
119 |
+
n_patches_per_row = ymax // patch_size
|
120 |
+
|
121 |
+
complete_image = np.zeros((xmax, ymax, 3))
|
122 |
+
|
123 |
+
row = -1
|
124 |
+
col = 0
|
125 |
+
for i in range(len(patches)):
|
126 |
+
if i % n_patches_per_row == 0:
|
127 |
+
row += 1
|
128 |
+
col = 0
|
129 |
+
complete_image[
|
130 |
+
row * patch_size: (row + 1) * patch_size, col * patch_size: (col + 1) * patch_size,:
|
131 |
+
] = patches[i]
|
132 |
+
col += 1
|
133 |
+
return complete_image[0: target_shape[0], 0: target_shape[1], :]
|
upscaler/__init__.py
ADDED
File without changes
|
upscaler/codeformer.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import torch
|
3 |
+
import onnx
|
4 |
+
import onnxruntime
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
import time
|
8 |
+
|
9 |
+
# codeformer converted to onnx
|
10 |
+
# using https://github.com/redthing1/CodeFormer
|
11 |
+
|
12 |
+
|
13 |
+
class CodeFormerEnhancer:
|
14 |
+
def __init__(self, model_path="codeformer.onnx", device='cpu'):
|
15 |
+
model = onnx.load(model_path)
|
16 |
+
session_options = onnxruntime.SessionOptions()
|
17 |
+
session_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
18 |
+
providers = ["CPUExecutionProvider"]
|
19 |
+
if device == 'cuda':
|
20 |
+
providers = [("CUDAExecutionProvider", {"cudnn_conv_algo_search": "DEFAULT"}),"CPUExecutionProvider"]
|
21 |
+
self.session = onnxruntime.InferenceSession(model_path, sess_options=session_options, providers=providers)
|
22 |
+
|
23 |
+
def enhance(self, img, w=0.9):
|
24 |
+
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
|
25 |
+
img = img.astype(np.float32)[:,:,::-1] / 255.0
|
26 |
+
img = img.transpose((2, 0, 1))
|
27 |
+
nrm_mean = np.array([0.5, 0.5, 0.5]).reshape((-1, 1, 1))
|
28 |
+
nrm_std = np.array([0.5, 0.5, 0.5]).reshape((-1, 1, 1))
|
29 |
+
img = (img - nrm_mean) / nrm_std
|
30 |
+
|
31 |
+
img = np.expand_dims(img, axis=0)
|
32 |
+
|
33 |
+
out = self.session.run(None, {'x':img.astype(np.float32), 'w':np.array([w], dtype=np.double)})[0]
|
34 |
+
out = (out[0].transpose(1,2,0).clip(-1,1) + 1) * 0.5
|
35 |
+
out = (out * 255)[:,:,::-1]
|
36 |
+
|
37 |
+
return out.astype('uint8')
|
utils.py
ADDED
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import time
|
4 |
+
import glob
|
5 |
+
import shutil
|
6 |
+
import platform
|
7 |
+
import datetime
|
8 |
+
import subprocess
|
9 |
+
import numpy as np
|
10 |
+
from threading import Thread
|
11 |
+
from moviepy.editor import VideoFileClip, ImageSequenceClip
|
12 |
+
from moviepy.video.io.ffmpeg_tools import ffmpeg_extract_subclip
|
13 |
+
|
14 |
+
|
15 |
+
logo_image = cv2.imread("./assets/images/logo.png", cv2.IMREAD_UNCHANGED)
|
16 |
+
|
17 |
+
|
18 |
+
quality_types = ["poor", "low", "medium", "high", "best"]
|
19 |
+
|
20 |
+
|
21 |
+
bitrate_quality_by_resolution = {
|
22 |
+
240: {"poor": "300k", "low": "500k", "medium": "800k", "high": "1000k", "best": "1200k"},
|
23 |
+
360: {"poor": "500k","low": "800k","medium": "1200k","high": "1500k","best": "2000k"},
|
24 |
+
480: {"poor": "800k","low": "1200k","medium": "2000k","high": "2500k","best": "3000k"},
|
25 |
+
720: {"poor": "1500k","low": "2500k","medium": "4000k","high": "5000k","best": "6000k"},
|
26 |
+
1080: {"poor": "2500k","low": "4000k","medium": "6000k","high": "7000k","best": "8000k"},
|
27 |
+
1440: {"poor": "4000k","low": "6000k","medium": "8000k","high": "10000k","best": "12000k"},
|
28 |
+
2160: {"poor": "8000k","low": "10000k","medium": "12000k","high": "15000k","best": "20000k"}
|
29 |
+
}
|
30 |
+
|
31 |
+
|
32 |
+
crf_quality_by_resolution = {
|
33 |
+
240: {"poor": 45, "low": 35, "medium": 28, "high": 23, "best": 20},
|
34 |
+
360: {"poor": 35, "low": 28, "medium": 23, "high": 20, "best": 18},
|
35 |
+
480: {"poor": 28, "low": 23, "medium": 20, "high": 18, "best": 16},
|
36 |
+
720: {"poor": 23, "low": 20, "medium": 18, "high": 16, "best": 14},
|
37 |
+
1080: {"poor": 20, "low": 18, "medium": 16, "high": 14, "best": 12},
|
38 |
+
1440: {"poor": 18, "low": 16, "medium": 14, "high": 12, "best": 10},
|
39 |
+
2160: {"poor": 16, "low": 14, "medium": 12, "high": 10, "best": 8}
|
40 |
+
}
|
41 |
+
|
42 |
+
|
43 |
+
def get_bitrate_for_resolution(resolution, quality):
|
44 |
+
available_resolutions = list(bitrate_quality_by_resolution.keys())
|
45 |
+
closest_resolution = min(available_resolutions, key=lambda x: abs(x - resolution))
|
46 |
+
return bitrate_quality_by_resolution[closest_resolution][quality]
|
47 |
+
|
48 |
+
|
49 |
+
def get_crf_for_resolution(resolution, quality):
|
50 |
+
available_resolutions = list(crf_quality_by_resolution.keys())
|
51 |
+
closest_resolution = min(available_resolutions, key=lambda x: abs(x - resolution))
|
52 |
+
return crf_quality_by_resolution[closest_resolution][quality]
|
53 |
+
|
54 |
+
|
55 |
+
def get_video_bitrate(video_file):
|
56 |
+
ffprobe_cmd = ['ffprobe', '-v', 'error', '-select_streams', 'v:0', '-show_entries',
|
57 |
+
'stream=bit_rate', '-of', 'default=noprint_wrappers=1:nokey=1', video_file]
|
58 |
+
result = subprocess.run(ffprobe_cmd, stdout=subprocess.PIPE)
|
59 |
+
kbps = max(int(result.stdout) // 1000, 10)
|
60 |
+
return str(kbps) + 'k'
|
61 |
+
|
62 |
+
|
63 |
+
def trim_video(video_path, output_path, start_frame, stop_frame):
|
64 |
+
video_name, _ = os.path.splitext(os.path.basename(video_path))
|
65 |
+
trimmed_video_filename = video_name + "_trimmed" + ".mp4"
|
66 |
+
temp_path = os.path.join(output_path, "trim")
|
67 |
+
os.makedirs(temp_path, exist_ok=True)
|
68 |
+
trimmed_video_file_path = os.path.join(temp_path, trimmed_video_filename)
|
69 |
+
|
70 |
+
video = VideoFileClip(video_path, fps_source="fps")
|
71 |
+
fps = video.fps
|
72 |
+
start_time = start_frame / fps
|
73 |
+
duration = (stop_frame - start_frame) / fps
|
74 |
+
|
75 |
+
bitrate = get_bitrate_for_resolution(min(*video.size), "high")
|
76 |
+
|
77 |
+
trimmed_video = video.subclip(start_time, start_time + duration)
|
78 |
+
trimmed_video.write_videofile(
|
79 |
+
trimmed_video_file_path, codec="libx264", audio_codec="aac", bitrate=bitrate,
|
80 |
+
)
|
81 |
+
trimmed_video.close()
|
82 |
+
video.close()
|
83 |
+
|
84 |
+
return trimmed_video_file_path
|
85 |
+
|
86 |
+
|
87 |
+
def open_directory(path=None):
|
88 |
+
if path is None:
|
89 |
+
return
|
90 |
+
try:
|
91 |
+
os.startfile(path)
|
92 |
+
except:
|
93 |
+
subprocess.Popen(["xdg-open", path])
|
94 |
+
|
95 |
+
|
96 |
+
class StreamerThread(object):
|
97 |
+
def __init__(self, src=0):
|
98 |
+
self.capture = cv2.VideoCapture(src)
|
99 |
+
self.capture.set(cv2.CAP_PROP_BUFFERSIZE, 2)
|
100 |
+
self.FPS = 1 / 30
|
101 |
+
self.FPS_MS = int(self.FPS * 1000)
|
102 |
+
self.thread = None
|
103 |
+
self.stopped = False
|
104 |
+
self.frame = None
|
105 |
+
|
106 |
+
def start(self):
|
107 |
+
self.thread = Thread(target=self.update, args=())
|
108 |
+
self.thread.daemon = True
|
109 |
+
self.thread.start()
|
110 |
+
|
111 |
+
def stop(self):
|
112 |
+
self.stopped = True
|
113 |
+
self.thread.join()
|
114 |
+
print("stopped")
|
115 |
+
|
116 |
+
def update(self):
|
117 |
+
while not self.stopped:
|
118 |
+
if self.capture.isOpened():
|
119 |
+
(self.status, self.frame) = self.capture.read()
|
120 |
+
time.sleep(self.FPS)
|
121 |
+
|
122 |
+
|
123 |
+
class ProcessBar:
|
124 |
+
def __init__(self, bar_length, total, before="⬛", after="🟨"):
|
125 |
+
self.bar_length = bar_length
|
126 |
+
self.total = total
|
127 |
+
self.before = before
|
128 |
+
self.after = after
|
129 |
+
self.bar = [self.before] * bar_length
|
130 |
+
self.start_time = time.time()
|
131 |
+
|
132 |
+
def get(self, index):
|
133 |
+
total = self.total
|
134 |
+
elapsed_time = time.time() - self.start_time
|
135 |
+
average_time_per_iteration = elapsed_time / (index + 1)
|
136 |
+
remaining_iterations = total - (index + 1)
|
137 |
+
estimated_remaining_time = remaining_iterations * average_time_per_iteration
|
138 |
+
|
139 |
+
self.bar[int(index / total * self.bar_length)] = self.after
|
140 |
+
info_text = f"({index+1}/{total}) {''.join(self.bar)} "
|
141 |
+
info_text += f"(ETR: {int(estimated_remaining_time // 60)} min {int(estimated_remaining_time % 60)} sec)"
|
142 |
+
return info_text
|
143 |
+
|
144 |
+
|
145 |
+
def add_logo_to_image(img, logo=logo_image):
|
146 |
+
logo_size = int(img.shape[1] * 0.1)
|
147 |
+
logo = cv2.resize(logo, (logo_size, logo_size))
|
148 |
+
if logo.shape[2] == 4:
|
149 |
+
alpha = logo[:, :, 3]
|
150 |
+
else:
|
151 |
+
alpha = np.ones_like(logo[:, :, 0]) * 255
|
152 |
+
padding = int(logo_size * 0.1)
|
153 |
+
roi = img.shape[0] - logo_size - padding, img.shape[1] - logo_size - padding
|
154 |
+
for c in range(0, 3):
|
155 |
+
img[roi[0] : roi[0] + logo_size, roi[1] : roi[1] + logo_size, c] = (
|
156 |
+
alpha / 255.0
|
157 |
+
) * logo[:, :, c] + (1 - alpha / 255.0) * img[
|
158 |
+
roi[0] : roi[0] + logo_size, roi[1] : roi[1] + logo_size, c
|
159 |
+
]
|
160 |
+
return img
|
161 |
+
|
162 |
+
|
163 |
+
def split_list_by_lengths(data, length_list):
|
164 |
+
split_data = []
|
165 |
+
start_idx = 0
|
166 |
+
for length in length_list:
|
167 |
+
end_idx = start_idx + length
|
168 |
+
sublist = data[start_idx:end_idx]
|
169 |
+
split_data.append(sublist)
|
170 |
+
start_idx = end_idx
|
171 |
+
return split_data
|
172 |
+
|
173 |
+
|
174 |
+
def merge_img_sequence_from_ref(ref_video_path, image_sequence, output_file_name):
|
175 |
+
video_clip = VideoFileClip(ref_video_path, fps_source="fps")
|
176 |
+
fps = video_clip.fps
|
177 |
+
duration = video_clip.duration
|
178 |
+
total_frames = video_clip.reader.nframes
|
179 |
+
audio_clip = video_clip.audio if video_clip.audio is not None else None
|
180 |
+
edited_video_clip = ImageSequenceClip(image_sequence, fps=fps)
|
181 |
+
|
182 |
+
if audio_clip is not None:
|
183 |
+
edited_video_clip = edited_video_clip.set_audio(audio_clip)
|
184 |
+
|
185 |
+
bitrate = get_bitrate_for_resolution(min(*edited_video_clip.size), "high")
|
186 |
+
|
187 |
+
edited_video_clip.set_duration(duration).write_videofile(
|
188 |
+
output_file_name, codec="libx264", bitrate=bitrate,
|
189 |
+
)
|
190 |
+
edited_video_clip.close()
|
191 |
+
video_clip.close()
|
192 |
+
|
193 |
+
|
194 |
+
def scale_bbox_from_center(bbox, scale_width, scale_height, image_width, image_height):
|
195 |
+
# Extract the coordinates of the bbox
|
196 |
+
x1, y1, x2, y2 = bbox
|
197 |
+
|
198 |
+
# Calculate the center point of the bbox
|
199 |
+
center_x = (x1 + x2) / 2
|
200 |
+
center_y = (y1 + y2) / 2
|
201 |
+
|
202 |
+
# Calculate the new width and height of the bbox based on the scaling factors
|
203 |
+
width = x2 - x1
|
204 |
+
height = y2 - y1
|
205 |
+
new_width = width * scale_width
|
206 |
+
new_height = height * scale_height
|
207 |
+
|
208 |
+
# Calculate the new coordinates of the bbox, considering the image boundaries
|
209 |
+
new_x1 = center_x - new_width / 2
|
210 |
+
new_y1 = center_y - new_height / 2
|
211 |
+
new_x2 = center_x + new_width / 2
|
212 |
+
new_y2 = center_y + new_height / 2
|
213 |
+
|
214 |
+
# Adjust the coordinates to ensure the bbox remains within the image boundaries
|
215 |
+
new_x1 = max(0, new_x1)
|
216 |
+
new_y1 = max(0, new_y1)
|
217 |
+
new_x2 = min(image_width - 1, new_x2)
|
218 |
+
new_y2 = min(image_height - 1, new_y2)
|
219 |
+
|
220 |
+
# Return the scaled bbox coordinates
|
221 |
+
scaled_bbox = [new_x1, new_y1, new_x2, new_y2]
|
222 |
+
return scaled_bbox
|
223 |
+
|
224 |
+
|
225 |
+
def laplacian_blending(A, B, m, num_levels=7):
|
226 |
+
assert A.shape == B.shape
|
227 |
+
assert B.shape == m.shape
|
228 |
+
height = m.shape[0]
|
229 |
+
width = m.shape[1]
|
230 |
+
size_list = np.array([4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192])
|
231 |
+
size = size_list[np.where(size_list > max(height, width))][0]
|
232 |
+
GA = np.zeros((size, size, 3), dtype=np.float32)
|
233 |
+
GA[:height, :width, :] = A
|
234 |
+
GB = np.zeros((size, size, 3), dtype=np.float32)
|
235 |
+
GB[:height, :width, :] = B
|
236 |
+
GM = np.zeros((size, size, 3), dtype=np.float32)
|
237 |
+
GM[:height, :width, :] = m
|
238 |
+
gpA = [GA]
|
239 |
+
gpB = [GB]
|
240 |
+
gpM = [GM]
|
241 |
+
for i in range(num_levels):
|
242 |
+
GA = cv2.pyrDown(GA)
|
243 |
+
GB = cv2.pyrDown(GB)
|
244 |
+
GM = cv2.pyrDown(GM)
|
245 |
+
gpA.append(np.float32(GA))
|
246 |
+
gpB.append(np.float32(GB))
|
247 |
+
gpM.append(np.float32(GM))
|
248 |
+
lpA = [gpA[num_levels-1]]
|
249 |
+
lpB = [gpB[num_levels-1]]
|
250 |
+
gpMr = [gpM[num_levels-1]]
|
251 |
+
for i in range(num_levels-1,0,-1):
|
252 |
+
LA = np.subtract(gpA[i-1], cv2.pyrUp(gpA[i]))
|
253 |
+
LB = np.subtract(gpB[i-1], cv2.pyrUp(gpB[i]))
|
254 |
+
lpA.append(LA)
|
255 |
+
lpB.append(LB)
|
256 |
+
gpMr.append(gpM[i-1])
|
257 |
+
LS = []
|
258 |
+
for la,lb,gm in zip(lpA,lpB,gpMr):
|
259 |
+
ls = la * gm + lb * (1.0 - gm)
|
260 |
+
LS.append(ls)
|
261 |
+
ls_ = LS[0]
|
262 |
+
for i in range(1,num_levels):
|
263 |
+
ls_ = cv2.pyrUp(ls_)
|
264 |
+
ls_ = cv2.add(ls_, LS[i])
|
265 |
+
ls_ = ls_[:height, :width, :]
|
266 |
+
#ls_ = (ls_ - np.min(ls_)) * (255.0 / (np.max(ls_) - np.min(ls_)))
|
267 |
+
return ls_.clip(0, 255)
|
268 |
+
|
269 |
+
|
270 |
+
def mask_crop(mask, crop):
|
271 |
+
top, bottom, left, right = crop
|
272 |
+
shape = mask.shape
|
273 |
+
top = int(top)
|
274 |
+
bottom = int(bottom)
|
275 |
+
if top + bottom < shape[1]:
|
276 |
+
if top > 0: mask[:top, :] = 0
|
277 |
+
if bottom > 0: mask[-bottom:, :] = 0
|
278 |
+
|
279 |
+
left = int(left)
|
280 |
+
right = int(right)
|
281 |
+
if left + right < shape[0]:
|
282 |
+
if left > 0: mask[:, :left] = 0
|
283 |
+
if right > 0: mask[:, -right:] = 0
|
284 |
+
|
285 |
+
return mask
|
286 |
+
|
287 |
+
def create_image_grid(images, size=128):
|
288 |
+
num_images = len(images)
|
289 |
+
num_cols = int(np.ceil(np.sqrt(num_images)))
|
290 |
+
num_rows = int(np.ceil(num_images / num_cols))
|
291 |
+
grid = np.zeros((num_rows * size, num_cols * size, 3), dtype=np.uint8)
|
292 |
+
|
293 |
+
for i, image in enumerate(images):
|
294 |
+
row_idx = (i // num_cols) * size
|
295 |
+
col_idx = (i % num_cols) * size
|
296 |
+
image = cv2.resize(image.copy(), (size,size))
|
297 |
+
if image.dtype != np.uint8:
|
298 |
+
image = (image.astype('float32') * 255).astype('uint8')
|
299 |
+
if image.ndim == 2:
|
300 |
+
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
|
301 |
+
grid[row_idx:row_idx + size, col_idx:col_idx + size] = image
|
302 |
+
|
303 |
+
return grid
|