File size: 6,980 Bytes
8e62182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a4d097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e62182
 
2a4d097
8e62182
 
 
 
 
 
2a4d097
 
 
 
 
 
 
 
 
 
 
 
8e62182
2a4d097
 
8e62182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import gradio as gr
import open_clip
import torch
import requests
import numpy as np
from PIL import Image

# Sidebar content
sidebar_markdown = """

We have several resources related to our new fashion models.

## Documentation
πŸ“š [Blog Post](https://www.marqo.ai/blog/search-model-for-fashion)

πŸ“ [Use Case Blog Post](https://www.marqo.ai/blog/ecommerce-image-classification-with-marqo-fashionclip)

## Code
πŸ’» [GitHub Repo](https://github.com/marqo-ai/marqo-FashionCLIP)

🀝 [Google Colab](https://colab.research.google.com/drive/1nq978xFJjJcnyrJ2aE5l82GHAXOvTmfd?usp=sharing)

πŸ€— [Hugging Face Collection](https://huggingface.co/collections/Marqo/marqo-fashionclip-and-marqo-fashionsiglip-66b43f2d09a06ad2368d4af6)

## Citation
If you use Marqo-FashionSigLIP or Marqo-FashionCLIP, please cite us:
```
@software{Jung_Marqo-FashionCLIP_and_Marqo-FashionSigLIP_2024,
author = {Jung, Myong Chol and Clark, Jesse},
month = aug,
title = {{Marqo-FashionCLIP and Marqo-FashionSigLIP}},
url = {https://github.com/marqo-ai/marqo-FashionCLIP},
version = {1.0.0},
year = {2024}
```
"""

# List of fashion items
items = [
    "Leggings", "Jogger", "Palazzo", "Cargo", "Dresspants", "Chinos", 
    "Dress", "Blouse", "T-Shirt", "Jeans", "Skirt", "Shorts", 
    "Sweater", "Cardigan", "Tank Top", "Hoodie", "Coat", 
    "Jacket", "Polo Shirt", "Crop Top", "Romper", 
    "Overalls", "Blazer", "Sweatpants", "Vest", 
    "Dungarees", "Poncho", "Bodysuit", "Maxi Dress", 
    "Hat", "Sunglasses", "Glasses", "Shoes", "Sandals", 
    "Heels", "Trainers", "Belt", "Tie", "Dress Shirt", 
    "Boots", "Slippers", "Sneakers", "Insoles", "Socks", 
    "Insulated Jacket", "Fleece", "Rain Jacket", "Running Jacket", 
    "Windbreaker", "Shirt", "Graphic Top", "Sweatshirt", 
    "Pant", "Legging", "Short", "Skort", "Brief", 
    "Sports Bra", "Base Layer Top", "Base Layer Bottom", 
    "Swimsuit", "Rashguard", "Water Shorts", "Cover Up", 
    "Goggle", "Sun Hat", "Glove", "Mitten", "Leg Gaiter", 
    "Bandana", "Neck Gaiter", "Balaclava", "Sunglass", 
    "Watch", "Bag", "Boxer", "Swim Trunk", "Ring", 
    "Necklace", "Earing", "Pocket Watch", "Smock", 
    "Trouser", "Tuxedo", "Cufflinks", "Suspenders", 
    "Handkerchief", "Scarf", "Wristband", "Beanie", 
    "Fedora", "Beret", "Clutch Bag", "Crossbody Bag", 
    "Duffel Bag", "Backpack", "Umbrella", "Flip Flops", 
    "Espadrilles", "Loafers", "Moccasins", "Chelsea Boots", 
    "Ankle Boots", "Bow Tie", "Tie Clip", "Hair Clip", 
    "Headband", "Visor", "Baseball Cap", "Bucket Hat", 
    "Fingerless Gloves", "Touchscreen Gloves", "Trench Coat", 
    "Peacoat", "Parka", "Bomber Jacket", "Utility Vest", 
    "Puffer Jacket", "Cape", "Shrug", "Kimono", "Sarong", 
    "Apron", "Bikini", "Poncho", "Wristwatch", "Choker", 
    "Brooch", "Anklet", "Toe Ring", "Waist Belt"
]


# Initialize the model and tokenizer
model_name = 'hf-hub:Marqo/marqo-fashionSigLIP'
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms(model_name)
tokenizer = open_clip.get_tokenizer(model_name)

def generate_description(item):
    if "Pants" in item or item in ["Leggings", "Jogger", "Cargo", "Chinos", "Palazzo", "Dresspants", "Sweatpants", "Pant", "Legging", "Skort", "Trouser"]:
        return f"A pair of {item} pants"
    elif item in ["Dress", "Blouse", "T-Shirt", "Tank Top", "Sweater", "Cardigan", "Hoodie", "Coat", "Jacket", "Polo Shirt", "Crop Top", "Romper", "Blazer", "Vest", "Bodysuit", "Maxi Dress", "Graphic Top", "Shirt", "Base Layer Top", "Base Layer Bottom", "Swimsuit", "Rashguard", "Cover Up", "Smock", "Tuxedo"]:
        return f"A {item}"
    elif item in ["Hat", "Sunglasses", "Glasses", "Sun Hat", "Goggle", "Balaclava"]:
        return f"A {item} worn on the head or face"
    elif item in ["Shoes", "Sandals", "Heels", "Trainers", "Boots", "Slippers", "Sneakers", "Insoles", "Socks"]:
        return f"A pair of {item} worn on the feet"
    elif item in ["Jeans", "Skirt", "Shorts", "Dungarees", "Poncho", "Overalls", "Brief", "Boxer", "Swim Trunk", "Ring", "Necklace", "Earing", "Pocket Watch"]:
        return f"A {item} piece of clothing"
    elif item in ["Boxing Gloves", "Glove", "Mitten"]:
        return f"An item of {item} worn on the hands"
    else:
        return f"A fashion item called {item}"


items_desc = [generate_description(item) for item in items]
text = tokenizer(items_desc)

# Encode text features
with torch.no_grad(), torch.cuda.amp.autocast():
    text_features = model.encode_text(text)
    text_features /= text_features.norm(dim=-1, keepdim=True)

# Prediction function
def predict(inp):
    image = preprocess_val(inp).unsqueeze(0)

    with torch.no_grad(), torch.cuda.amp.autocast():
        image_features = model.encode_image(image)
        image_features /= image_features.norm(dim=-1, keepdim=True)

        text_probs = (100 * image_features @ text_features.T).softmax(dim=-1)
        
        # Sort the confidences and get the top 10
        sorted_confidences = sorted(
            {items[i]: float(text_probs[0, i]) for i in range(len(items))}.items(), 
            key=lambda x: x[1], 
            reverse=True
        )
        top_10_confidences = dict(sorted_confidences[:10])
        
    return top_10_confidences

# Gradio interface
title = "Fashion Item Classifier with Marqo-FashionSigLIP"
description = "Upload an image of a fashion item and classify it using [Marqo-FashionSigLIP](https://huggingface.co/Marqo/marqo-fashionSigLIP)!"

# Example image paths with thumbnails
examples = [
    ["images/dress.jpg", "Dress"],
    ["images/sweatpants.jpg", "Sweatpants"],
    ["images/t-shirt.jpg", "T-Shirt"],
    ["images/hat.jpg", "Hat"],
    ["images/blouse.jpg", "Blouse"],
    ["images/cargo.jpg", "Cargos"],
    ["images/sunglasses.jpg", "Sunglasses"],
    ["images/polo-shirt.jpg", "Polo Shirt"],
]

with gr.Blocks(css="""
    .remove-btn {
        font-size: 24px !important; /* Increase the font size of the cross button */
        line-height: 24px !important;
        width: 30px !important; /* Increase the width */
        height: 30px !important; /* Increase the height */
    }
""") as demo:
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown(f"# {title}")
            gr.Markdown(description)
            gr.Markdown(sidebar_markdown)
            gr.Markdown(" ", elem_id="vertical-line")  # Add an empty Markdown with a custom ID
        with gr.Column(scale=2):
            input_image = gr.Image(type="pil", label="Upload Fashion Item Image", height=312)
            predict_button = gr.Button("Classify")
            gr.Markdown("Or click on one of the images below to classify it:")
            gr.Examples(examples=examples, inputs=input_image)
        # with gr.Column(scale=3):            
            output_label = gr.Label(num_top_classes=6)
            predict_button.click(predict, inputs=input_image, outputs=output_label)
        
    
# Launch the interface
demo.launch(share=True)