Spaces:
Sleeping
Sleeping
File size: 16,770 Bytes
48ac659 7b39cbc 48ac659 7b39cbc 48ac659 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
'''
Ke Chen | [email protected] & Nikita Srivatsan | [email protected]
Load the mp3 format data from audiostock-full dataset
'''
import json
import numpy as np
import os
import pandas as pd
from pathlib import PurePosixPath
import random
import torch
import torchaudio
from torch.utils.data import Dataset
import sys
from lib import *
from utils import *
import torch.utils.data
def int16_to_float32(x):
return (x / 32767.0).type(torch.float)
def float32_to_int16(x):
x = torch.clip(x, min=-1., max=1.)
return (x * 32767.).type(torch.int16)
def my_collate(batch):
batch = [x for x in batch if x is not None]
if len(batch) == 0:
return batch
else:
return torch.utils.data.dataloader.default_collate(batch)
class AudiostockDataset(Dataset):
'''
Args:
dataset_path (str): the dataset folder path
train (bool): if True, we randomly return a 10-sec chunk from each audio file; if False, we return the middle 10-sec chunk (fixed)
split (str): a txt file to assign the idx in this dataset (for trainng, validation and testing)
factor (float): how many time we need to loop the whole dataset, this is to increase the number of training data batches in each epoch
whole_track (bool): if True, the dataset will return the full length of the audio file. However, this means the batch_size = 1, and it is usually in the test/validation case
'''
def __init__(self, dataset_path, tweet_prefix=True, prefix_length=10, normalize=False, dupefile='dupes.pkl', train = True, split = None, factor = 1.0, whole_track = False, verbose=True, dedup=True, file_list=[]):
super().__init__()
# set up parameters
self.max_seq_len = 150
self.tweet_prefix = tweet_prefix
if self.tweet_prefix:
self.max_seq_len *= 2
self.tokenizer = GPT2Tokenizer.from_pretrained('gpt2', local_files_only=True)
self.prefix_length = prefix_length
self.normalize = normalize
self.id2neighbor = defaultdict(lambda: '')
if dedup:
if dupefile is not None and os.path.exists(dupefile):
with open(dupefile, 'rb') as dupefile:
self.is_rep = pickle.load(dupefile).is_rep
elif dupefile == 'both':
with open('dupes.pkl', 'rb') as dupefile:
dupes1 = pickle.load(dupefile)
with open('dupes_audio.pkl', 'rb') as dupefile:
dupes2 = pickle.load(dupefile)
self.is_rep = defaultdict(lambda: True)
for k,v in dupes1.is_rep.items():
self.is_rep[k] = v
for k,v in dupes2.is_rep.items():
self.is_rep[k] = v
else:
sys.exit('Could not find duplicate file')
subfolders = [f'audiostock-part-{i}' for i in range(1,9)]
self.label_path = os.path.join(dataset_path, 'audiostock-full-label')
self.whole_track = whole_track
self.file_list = file_list
# select out the elements for this split
if self.file_list == []:
temp_file_list = []
for subfolder in subfolders:
temp_file_list += [os.path.join(dataset_path, subfolder, f) for f in os.listdir(os.path.join(dataset_path, subfolder)) if not dedup or self.is_rep[os.path.basename(f).split('.')[0]]]
if split is not None:
split = set(np.loadtxt(split, dtype = str))
self.file_list = [f for f in temp_file_list if os.path.basename(f).split('.')[0] in split]
else:
self.file_list = temp_file_list
self.train = train
self.total_len = int(len(self.file_list) * factor)
if verbose:
print(f'Dataset Loaded | File Num.: {len(self.file_list)} | Batches per epoch: {self.total_len}')
def precompute_rand(self, candidate_set=None):
self.id2neighbor = defaultdict(lambda: '')
# if train
if candidate_set is None:
my_ids = []
candidate_caps = []
temp_loader = DataLoader(self, batch_size=32, shuffle=False, num_workers=32, drop_last=False, collate_fn=my_collate)
for batch in temp_loader:
my_ids += batch['id']
candidate_caps += batch['short_text']
for idx in my_ids:
self.id2neighbor[idx] = random.choice(candidate_caps)
# if test
else:
temp_loader = DataLoader(candidate_set, batch_size=32, shuffle=False, num_workers=32, drop_last=False, collate_fn=my_collate)
candidate_caps = []
for batch in temp_loader:
candidate_caps += batch['short_text']
temp_loader = DataLoader(self, batch_size=32, shuffle=False, num_workers=32, drop_last=False, collate_fn=my_collate)
my_ids = []
for batch in temp_loader:
my_ids += batch['id']
for idx in my_ids:
self.id2neighbor[idx] = random.choice(candidate_caps)
def precompute_gold(self):
self.id2neighbor = defaultdict(lambda: '')
temp_loader = DataLoader(self, batch_size=32, shuffle=False, num_workers=32, drop_last=False, collate_fn=my_collate)
for batch in temp_loader:
for idx,short_text in zip(batch['id'], batch['short_text']):
self.id2neighbor[idx] = short_text
def precompute_blank(self):
self.id2neighbor = defaultdict(lambda: '\n')
def precompute_neighbors(self, model, candidate_set=None):
print('Precomputing neighbors')
self.id2neighbor = defaultdict(lambda: '')
# if train and model given
if candidate_set is None:
# compute waveform embeddings for each song
cand_features = None
cand_ids = []
cand_caps = []
temp_loader = DataLoader(self, batch_size=32, shuffle=False, num_workers=32, drop_last=False, collate_fn=my_collate)
progress = tqdm(total=len(temp_loader), dynamic_ncols=True)
for batch in temp_loader:
with torch.no_grad():
batch_features = model.embed_waveform(batch['waveform'].cuda())
if cand_features is not None:
cand_features = torch.cat([cand_features, batch_features])
else:
cand_features = batch_features
cand_ids += batch['id']
cand_caps += batch['short_text']
progress.update()
progress.close()
my_features = cand_features
my_ids = cand_ids
# if test and model given
else:
# check if we already precomputed the embeddings
pickle_filename = 'nn_features.pkl'
if os.path.isfile(pickle_filename):
with open(pickle_filename, 'rb') as f:
(cand_features, cand_ids, cand_caps) = pickle.load(f)
else:
# build the features from the provided set instead of self
cand_features = None
cand_ids = []
cand_caps = []
temp_loader = DataLoader(candidate_set, batch_size=32, shuffle=False, num_workers=32, drop_last=False, collate_fn=my_collate)
progress = tqdm(total=len(temp_loader), dynamic_ncols=True)
for batch in temp_loader:
with torch.no_grad():
batch_features = model.embed_waveform(batch['waveform'].cuda())
if cand_features is not None:
cand_features = torch.cat([cand_features, batch_features])
else:
cand_features = batch_features
cand_ids += batch['id']
#cand_caps += [' '.join(x.split()[:10]) for x in batch['short_text']]
cand_caps += batch['short_text']
progress.update()
progress.close()
# dump to pickle so we don't have to redo this each time
with open(pickle_filename, 'wb') as f:
pickle.dump((cand_features, cand_ids, cand_caps), f)
# load up my own ids and features
my_features = None
my_ids = []
temp_loader = DataLoader(self, batch_size=32, shuffle=False, num_workers=32, drop_last=False, collate_fn=my_collate)
progress = tqdm(total=len(temp_loader), dynamic_ncols=True)
for batch in temp_loader:
with torch.no_grad():
batch_features = model.embed_waveform(batch['waveform'].cuda())
if my_features is not None:
my_features = torch.cat([my_features, batch_features])
else:
my_features = batch_features
my_ids += batch['id']
progress.update()
progress.close()
is_self_sim = my_ids == cand_ids
for idx,audio_id in tqdm(enumerate(my_ids), total=len(my_ids), dynamic_ncols=True):
features = my_features[idx]
similarities = features @ cand_features.T
# remove identical matches
if is_self_sim:
similarities[idx] = float('-inf')
best_idx = torch.argmax(similarities)
most_similar_caption = cand_caps[best_idx]
self.id2neighbor[my_ids[idx]] = most_similar_caption
def pad_tokens(self, tokens, tokens_tweet):
tweet_text_len = 0
if self.tweet_prefix:
tweet_text_len = tokens_tweet[:self.max_seq_len // 2].shape[0]
tokens = torch.cat((tokens_tweet[:tweet_text_len], tokens))
padding = self.max_seq_len - tokens.shape[0]
if padding > 0:
tokens = torch.cat((tokens, torch.zeros(padding, dtype=torch.int64) - 1))
elif padding < 0:
tokens = tokens[:self.max_seq_len]
mask = tokens.ge(0) # mask is zero where we out of sequence
tokens[~mask] = 0
mask = mask.float()
mask = torch.cat((torch.ones(self.prefix_length), mask), dim=0) # adding prefix mask
return tokens, mask, tweet_text_len
def read_wav(self, filename):
# pickling functionality removed since it shouldn't be necessary
# chunk
try:
num_frames = torchaudio.info(filename).num_frames
except:
return None
# make sure it wasn't empty, if so die
if num_frames == 0:
return None
sta = 0
if not self.whole_track:
if self.train:
sta = random.randint(0, num_frames - 441001)
else:
sta = (num_frames - 441001) // 2
num_frames = 441000
y, sr = torchaudio.load(filename, frame_offset=sta, num_frames=num_frames)
# resample
y = torchaudio.functional.resample(y, sr, 48000)
y = y[:, :441000]
# mono
y = y.mean(dim=0)
# normalize
y = int16_to_float32(float32_to_int16(y))
return y
def __getitem__(self, index):
idx = index % len(self.file_list)
data_dict = {}
f = self.file_list[idx]
lf = os.path.join(self.label_path, os.path.basename(f).split('.')[0] + '.json')
data_dict['waveform'] = self.read_wav(f)
if os.path.isfile(lf):
with open(lf,'r') as label_file:
label_data = json.load(label_file)
data_dict['id'] = label_data['id']
data_dict['short_text'] = label_data['short_text']
if self.normalize:
data_dict['short_text'] = ' '.join(muscaps_tokenize(data_dict['short_text']))
if 'long_text' in label_data and label_data['long_text'] is not None:
data_dict['long_text'] = label_data['long_text']
else:
data_dict['long_text'] = ''
'''
data_dict['tag'] = label_data['tag']
data_dict['impression'] = label_data['impression']
data_dict['purpose'] = label_data['purpose']
'''
else:
data_dict['id'] = os.path.basename(f).split('.')[0]
data_dict['short_text'] = ''
data_dict['long_text'] = ''
# tokenize the caption
caption_proc = preproc(data_dict['short_text'], self.tokenizer)
tokens = torch.tensor(caption_proc, dtype=torch.int64)
tweet_text = self.id2neighbor[data_dict['id']] if self.tweet_prefix else ''
tweet_proc = preproc(tweet_text, self.tokenizer, stop=False)
tokens_tweet = torch.tensor(tweet_proc, dtype=torch.int64)
tokens, mask, tweet_text_len = self.pad_tokens(tokens, tokens_tweet)
data_dict['tokens'] = tokens
data_dict['mask'] = mask
data_dict['tweet_text_len'] = tweet_text_len
data_dict['tweet_text'] = tweet_text
if (data_dict['id'] is None or
data_dict['short_text'] is None or
data_dict['long_text'] is None or
data_dict['tokens'] is None or
data_dict['mask'] is None or
data_dict['tweet_text_len'] is None or
data_dict['tweet_text'] is None or
data_dict['waveform'] is None
):
return None
else:
return data_dict
def __len__(self):
return self.total_len
class MusicCapsDataset(AudiostockDataset):
def __init__(self, dataset_path, args, train = True, split = None, factor = 1.0, whole_track = False, verbose=True, dedup=True):
super(AudiostockDataset, self).__init__()
# set up parameters
self.max_seq_len = 150
self.tweet_prefix = args.tweet_prefix
if self.tweet_prefix:
self.max_seq_len *= 2
self.tokenizer = GPT2Tokenizer.from_pretrained('gpt2', local_files_only=True)
self.prefix_length = args.prefix_length
self.normalize = args.normalize
self.whole_track = whole_track
self.label_path = os.path.join(dataset_path, 'audio')
self.file_list = []
self.label_data = []
label_reader = pd.read_csv(f'{dataset_path}/musiccaps-resplit.csv')
for idx,row in label_reader.iterrows():
if (row['is_audioset_eval'] == 1 and split == 'musiccaps_eval') \
or (row['is_audioset_eval'] == 0 and split == 'musiccaps_train') \
or (row['is_audioset_eval'] == 2 and split == 'musiccaps_dev'):
data_dict = {}
data_dict['id'] = row['ytid']
self.file_list.append(f"{dataset_path}/audio/{data_dict['id']}.wav")
data_dict['short_text'] = row['caption']
if self.normalize:
data_dict['short_text'] = ' '.join(muscaps_tokenize(data_dict['short_text']))
data_dict['long_text'] = ''
data_dict['tag'] = row['aspect_list']
self.label_data.append(data_dict)
self.train = train
self.total_len = int(len(self.file_list) * factor)
if verbose:
print(f'Dataset Loaded | File Num.: {len(self.file_list)} | Batches per epoch: {self.total_len}')
def __getitem__(self, index):
idx = index % len(self.file_list)
data_dict = {}
f = self.file_list[idx]
data_dict['waveform'] = self.read_wav(f)
for k,v in self.label_data[idx].items():
data_dict[k] = v
# tokenize the caption
caption_proc = preproc(data_dict['short_text'], self.tokenizer)
tokens = torch.tensor(caption_proc, dtype=torch.int64)
tweet_text = self.id2neighbor[data_dict['id']] if self.tweet_prefix else ''
tweet_proc = preproc(tweet_text, self.tokenizer, stop=False)
tokens_tweet = torch.tensor(tweet_proc, dtype=torch.int64)
tokens, mask, tweet_text_len = self.pad_tokens(tokens, tokens_tweet)
data_dict['tokens'] = tokens
data_dict['mask'] = mask
data_dict['tweet_text_len'] = tweet_text_len
data_dict['tweet_text'] = tweet_text
if (data_dict['id'] is None or
data_dict['short_text'] is None or
data_dict['long_text'] is None or
data_dict['tokens'] is None or
data_dict['mask'] is None or
data_dict['tweet_text_len'] is None or
data_dict['tweet_text'] is None or
data_dict['waveform'] is None
):
return None
else:
return data_dict
|