Spaces:
Running
Running
File size: 8,278 Bytes
83f52e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
from functools import partial
import os
import torch
import numpy as np
import gradio as gr
import gdown
from load import load_model, load_json
from load import load_unit_motion_embs_splits, load_keyids_splits
EXAMPLES = [
"A person is walking in a circle",
"A person is jumping rope",
"Someone is doing a backflip",
"A person is doing a moonwalk",
"A person walks forward and then turns back",
"Picking up an object",
"A person is swimming in the sea",
"A human is squatting",
"Someone is jumping with one foot",
"A person is chopping vegetables",
"Someone walks backward",
"Somebody is ascending a staircase",
"A person is sitting down",
"A person is taking the stairs",
"Someone is doing jumping jacks",
"The person walked forward and is picking up his toolbox",
"The person angrily punching the air."
]
# Show closest text in the training
# css to make videos look nice
CSS = """
video {
position: relative;
margin: 0;
box-shadow: var(--block-shadow);
border-width: var(--block-border-width);
border-color: var(--block-border-color);
border-radius: var(--block-radius);
background: var(--block-background-fill);
width: 100%;
line-height: var(--line-sm);
}
"""
def humanml3d_keyid_to_babel_rendered_url(h3d_index, amass_to_babel, keyid):
# Don't show the mirrored version of HumanMl3D
if "M" in keyid:
return None
dico = h3d_index[keyid]
path = dico["path"]
# HumanAct12 motions are not rendered online
# so we skip them for now
if "humanact12" in path:
return None
# This motion is not rendered in BABEL
# so we skip them for now
if path not in amass_to_babel:
return None
babel_id = amass_to_babel[path].zfill(6)
url = f"https://babel-renders.s3.eu-central-1.amazonaws.com/{babel_id}.mp4"
# For the demo, we retrieve from the first annotation only
ann = dico["annotations"][0]
start = ann["start"]
end = ann["end"]
text = ann["text"]
data = {
"url": url,
"start": start,
"end": end,
"text": text,
"keyid": keyid,
"babel_id": babel_id
}
return data
def retrieve(model, keyid_to_url, all_unit_motion_embs, all_keyids, text, splits=["test"], nmax=8):
unit_motion_embs = torch.cat([all_unit_motion_embs[s] for s in splits])
keyids = np.concatenate([all_keyids[s] for s in splits])
scores = model.compute_scores(text, unit_embs=unit_motion_embs)
sorted_idxs = np.argsort(-scores)
best_keyids = keyids[sorted_idxs]
best_scores = scores[sorted_idxs]
datas = []
for keyid, score in zip(best_keyids, best_scores):
if len(datas) == nmax:
break
data = keyid_to_url(keyid)
if data is None:
continue
data["score"] = round(float(score), 2)
datas.append(data)
return datas
# HTML component
def get_video_html(url, video_id, start=None, end=None, score=None, width=350, height=350):
trim = ""
if start is not None:
if end is not None:
trim = f"#t={start},{end}"
else:
trim = f"#t={start}"
score_t = ""
if score is not None:
score_t = f'title="Score = {score}"'
video_html = f'''
<video preload="auto" muted playsinline onpause="this.load()"
autoplay loop disablepictureinpicture id="{video_id}" width="{width}" height="{height}" {score_t}>
<source src="{url}{trim}" type="video/mp4">
Your browser does not support the video tag.
</video>
'''
return video_html
def retrive_component(retrieve_function, text, splits, nvids, n_component=16):
# cannot produce more than n_compoenent
nvids = min(nvids, n_component)
if not splits:
return [None for _ in range(n_component)]
splits_l = [x.lower() for x in splits]
datas = retrieve_function(text, splits=splits_l, nmax=nvids)
htmls = [
get_video_html(
url["url"], idx, start=url["start"],
end=url["end"], score=url["score"]
)
for idx, url in enumerate(datas)
]
# get n_component exactly if asked less
# pad with dummy blocks
htmls = htmls + [None for _ in range(max(0, n_component-nvids))]
return htmls
def main():
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# LOADING
model = load_model(device)
splits = ["train", "val", "test"]
all_unit_motion_embs = load_unit_motion_embs_splits(splits, device)
all_keyids = load_keyids_splits(splits)
h3d_index = load_json("amass-annotations/humanml3d.json")
amass_to_babel = load_json("amass-annotations/amass_to_babel.json")
keyid_to_url = partial(humanml3d_keyid_to_babel_rendered_url, h3d_index, amass_to_babel)
retrieve_function = partial(retrieve, model, keyid_to_url, all_unit_motion_embs, all_keyids)
# DEMO
theme = gr.themes.Default(primary_hue="blue", secondary_hue="gray")
retrive_and_show = partial(retrive_component, retrieve_function)
default_text = "A person is "
with gr.Blocks(css=CSS, theme=theme) as demo:
title = "<h1 style='text-align: center'>TMR: Text-to-Motion Retrieval Using Contrastive 3D Human Motion Synthesis </h1>"
gr.Markdown(title)
authors = """
<h2 style='text-align: center'>
<a href="https://mathis.petrovich.fr" target="_blank"><nobr>Mathis Petrovich</nobr></a>  
<a href="https://ps.is.mpg.de/~black" target="_blank"><nobr>Michael J. Black</nobr></a>  
<a href="https://imagine.enpc.fr/~varolg" target="_blank"><nobr>Gül Varol</nobr></a>
</h2>
"""
gr.Markdown(authors)
conf = """
<h2 style='text-align: center'>
<nobr>arXiv 2023</nobr>
</h2>
"""
gr.Markdown(conf)
videos = []
with gr.Row():
with gr.Column(scale=3):
with gr.Column(scale=2):
text = gr.Textbox(placeholder="Type in natural language, the motion to retrieve",
show_label=True, label="Text prompt", value=default_text)
with gr.Column(scale=1):
btn = gr.Button("Retrieve", variant='primary')
clear = gr.Button("Clear", variant='secondary')
with gr.Row():
with gr.Column(scale=1):
splits = gr.Dropdown(["Train", "Val", "Test"],
value=["Test"], multiselect=True, label="Splits",
info="HumanML3D data used for the motion database")
with gr.Column(scale=1):
nvideo_slider = gr.Slider(minimum=4, maximum=16, step=4, value=8, label="Number of videos")
with gr.Column(scale=2):
examples = gr.Examples(examples=EXAMPLES, inputs=text, examples_per_page=15)
i = -1
# should indent
for _ in range(4):
with gr.Row():
for _ in range(4):
i += 1
with gr.Column():
video = gr.HTML()
videos.append(video)
def check_error(splits):
if not splits:
raise gr.Error("At least one split should be selected!")
return splits
btn.click(fn=retrive_and_show, inputs=[text, splits, nvideo_slider], outputs=videos).then(
fn=check_error, inputs=splits
)
text.submit(fn=retrive_and_show, inputs=[text, splits, nvideo_slider], outputs=videos).then(
fn=check_error, inputs=splits
)
def keep_test(splits):
if len(splits) == 0:
return ["Test"]
return splits
def clear_videos():
return [None for x in range(16)] + [default_text]
clear.click(fn=clear_videos, outputs=videos + [text])
demo.launch()
def prepare():
if not os.path.exists("data"):
gdown.download_folder("https://drive.google.com/drive/folders/1MgPFgHZ28AMd01M1tJ7YW_1-ut3-4j08", use_cookies=False)
if __name__ == "__main__":
prepare()
main()
# new
# A person is walking slowly
|