Spaces:
Running
Running
ragavsachdeva
commited on
Commit
•
2c3862a
1
Parent(s):
492c088
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoModel
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
@st.cache_resource
|
8 |
+
def load_model():
|
9 |
+
model = AutoModel.from_pretrained("ragavsachdeva/magi", trust_remote_code=True)
|
10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
model.to(device)
|
12 |
+
return model
|
13 |
+
|
14 |
+
@st.cache_data
|
15 |
+
def read_image_as_np_array(image_path):
|
16 |
+
with open(image_path, "rb") as file:
|
17 |
+
image = Image.open(file).convert("L").convert("RGB")
|
18 |
+
image = np.array(image)
|
19 |
+
return image
|
20 |
+
|
21 |
+
@st.cache_data
|
22 |
+
def predict_detections_and_associations(
|
23 |
+
image_path,
|
24 |
+
character_detection_threshold,
|
25 |
+
panel_detection_threshold,
|
26 |
+
text_detection_threshold,
|
27 |
+
character_character_matching_threshold,
|
28 |
+
text_character_matching_threshold,
|
29 |
+
):
|
30 |
+
image = read_image_as_np_array(image_path)
|
31 |
+
with torch.no_grad():
|
32 |
+
result = model.predict_detections_and_associations(
|
33 |
+
[image],
|
34 |
+
character_detection_threshold=character_detection_threshold,
|
35 |
+
panel_detection_threshold=panel_detection_threshold,
|
36 |
+
text_detection_threshold=text_detection_threshold,
|
37 |
+
character_character_matching_threshold=character_character_matching_threshold,
|
38 |
+
text_character_matching_threshold=text_character_matching_threshold,
|
39 |
+
)[0]
|
40 |
+
return result
|
41 |
+
|
42 |
+
@st.cache_data
|
43 |
+
def predict_ocr(
|
44 |
+
image_path,
|
45 |
+
character_detection_threshold,
|
46 |
+
panel_detection_threshold,
|
47 |
+
text_detection_threshold,
|
48 |
+
character_character_matching_threshold,
|
49 |
+
text_character_matching_threshold,
|
50 |
+
):
|
51 |
+
if not generate_transcript:
|
52 |
+
return
|
53 |
+
image = read_image_as_np_array(image_path)
|
54 |
+
result = predict_detections_and_associations(
|
55 |
+
path_to_image,
|
56 |
+
character_detection_threshold,
|
57 |
+
panel_detection_threshold,
|
58 |
+
text_detection_threshold,
|
59 |
+
character_character_matching_threshold,
|
60 |
+
text_character_matching_threshold,
|
61 |
+
)
|
62 |
+
text_bboxes_for_all_images = [result["texts"]]
|
63 |
+
with torch.no_grad():
|
64 |
+
ocr_results = model.predict_ocr([image], text_bboxes_for_all_images)
|
65 |
+
return ocr_results
|
66 |
+
|
67 |
+
model = load_model()
|
68 |
+
|
69 |
+
path_to_image = "/scratch/shared/beegfs/rs/comics/mangas/bakuman/1.0/p_00009.png"
|
70 |
+
st.markdown("<style>.title{font-size:2em;text-align:center;color:#fff;font-family:'Comic Sans MS',cursive;text-transform:uppercase;letter-spacing:.1em;padding:.5em 0 .2em;background:0 0}.title span{background:-webkit-linear-gradient(45deg,#6495ed,#4169e1);-webkit-background-clip:text;-webkit-text-fill-color:transparent}.subheading{font-size:1.5em;text-align:center;color:#ddd;font-family:'Comic Sans MS',cursive}.affil,.authors{font-size:1em;text-align:center;color:#ddd;font-family:'Comic Sans MS',cursive}.authors{padding-top:1em}</style><div class='title-container'> <div class='title'> The <span>Ma</span>n<span>g</span>a Wh<span>i</span>sperer </div> <div class='subheading'> Automatically Generating Transcriptions for Comics </div> <div class='authors'> Ragav Sachdeva and Andrew Zisserman </div> <div class='affil'> University of Oxford </div></div>", unsafe_allow_html=True)
|
71 |
+
path_to_image = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
|
72 |
+
|
73 |
+
st.sidebar.markdown("**Mode**")
|
74 |
+
generate_detections_and_associations = st.sidebar.toggle("Generate detections and associations", True)
|
75 |
+
generate_transcript = st.sidebar.toggle("Generate transcript (slower)", False)
|
76 |
+
st.sidebar.markdown("**Hyperparameters**")
|
77 |
+
input_character_detection_threshold = st.sidebar.slider('Character detection threshold', 0.0, 1.0, 0.30, step=0.01)
|
78 |
+
input_panel_detection_threshold = st.sidebar.slider('Panel detection threshold', 0.0, 1.0, 0.2, step=0.01)
|
79 |
+
input_text_detection_threshold = st.sidebar.slider('Text detection threshold', 0.0, 1.0, 0.25, step=0.01)
|
80 |
+
input_character_character_matching_threshold = st.sidebar.slider('Character-character matching threshold', 0.0, 1.0, 0.7, step=0.01)
|
81 |
+
input_text_character_matching_threshold = st.sidebar.slider('Text-character matching threshold', 0.0, 1.0, 0.4, step=0.01)
|
82 |
+
|
83 |
+
|
84 |
+
if path_to_image is None:
|
85 |
+
st.stop()
|
86 |
+
|
87 |
+
image = read_image_as_np_array(path_to_image)
|
88 |
+
|
89 |
+
st.markdown("**Prediction**")
|
90 |
+
if generate_detections_and_associations or generate_transcript:
|
91 |
+
result = predict_detections_and_associations(
|
92 |
+
path_to_image,
|
93 |
+
input_character_detection_threshold,
|
94 |
+
input_panel_detection_threshold,
|
95 |
+
input_text_detection_threshold,
|
96 |
+
input_character_character_matching_threshold,
|
97 |
+
input_text_character_matching_threshold,
|
98 |
+
)
|
99 |
+
|
100 |
+
if generate_transcript:
|
101 |
+
ocr_results = predict_ocr(
|
102 |
+
path_to_image,
|
103 |
+
input_character_detection_threshold,
|
104 |
+
input_panel_detection_threshold,
|
105 |
+
input_text_detection_threshold,
|
106 |
+
input_character_character_matching_threshold,
|
107 |
+
input_text_character_matching_threshold,
|
108 |
+
)
|
109 |
+
|
110 |
+
if generate_detections_and_associations and generate_transcript:
|
111 |
+
col1, col2 = st.columns(2)
|
112 |
+
output = model.visualise_single_image_prediction(image, result)
|
113 |
+
col1.image(output)
|
114 |
+
text_bboxes_for_all_images = [result["texts"]]
|
115 |
+
ocr_results = model.predict_ocr([image], text_bboxes_for_all_images)
|
116 |
+
transcript = model.generate_transcript_for_single_image(result, ocr_results[0])
|
117 |
+
col2.text(transcript)
|
118 |
+
|
119 |
+
elif generate_detections_and_associations:
|
120 |
+
output = model.visualise_single_image_prediction(image, result)
|
121 |
+
st.image(output)
|
122 |
+
|
123 |
+
elif generate_transcript:
|
124 |
+
transcript = model.generate_transcript_for_single_image(result, ocr_results[0])
|
125 |
+
st.text(transcript)
|
126 |
+
|