File size: 9,029 Bytes
6124669 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import os
import sys
import torch.nn.functional as F
import torch
import numpy as np
import matplotlib
from matplotlib import pyplot as plt
import matplotlib.cm
from PIL import Image
import streamlit as st
from streamlit_drawable_canvas import st_canvas
from .. import demo_config
from demo_config import HUGGING_FACE
PACKAGE_PARENT = '../wise/'
SCRIPT_DIR = os.path.dirname(os.path.realpath(os.path.join(os.getcwd(), os.path.expanduser(__file__))))
sys.path.append(os.path.normpath(os.path.join(SCRIPT_DIR, PACKAGE_PARENT)))
from effects.gauss2d_xy_separated import Gauss2DEffect
from effects.minimal_pipeline import MinimalPipelineEffect
from helpers import torch_to_np, np_to_torch
from effects import get_default_settings
st.set_page_config(page_title="Editing Demo", layout="wide")
# @st.cache(hash_funcs={OilPaintEffect: id})
@st.cache(hash_funcs={MinimalPipelineEffect: id})
def local_edits_create_effect():
effect, preset, param_set = get_default_settings("minimal_pipeline")
effect.enable_checkpoints()
effect.cuda()
return effect, param_set
effect, param_set = local_edits_create_effect()
@st.experimental_memo
def gen_param_strength_fig():
cmap = matplotlib.cm.get_cmap('plasma')
# cmap show
gradient = np.linspace(0, 1, 256)
gradient = np.vstack((gradient, gradient))
fig, ax = plt.subplots(figsize=(3, 0.1))
fig.patch.set_alpha(0.0)
ax.set_title("parameter strength", fontsize=6.5, loc="left")
ax.imshow(gradient, aspect='auto', cmap=cmap)
ax.set_axis_off()
return fig, cmap
cmap_fig, cmap = gen_param_strength_fig()
st.session_state["canvas_key"] = "canvas"
try:
vp = st.session_state["result_vp"]
org_cuda = st.session_state["effect_input"]
except KeyError as e:
print("init run, certain keys not found. If this happens once its ok.")
if st.session_state["action"] != "switch_page_from_local_edits":
st.session_state.local_edit_action = "init"
st.session_state["action"] = "switch_page_from_local_edits" # on switchback, remember effect input
if "mask_edit_counter" not in st.session_state:
st.session_state["mask_edit_counter"] = 1
if "initial_drawing" not in st.session_state:
st.session_state["initial_drawing"] = {"random": st.session_state["mask_edit_counter"], "background": "#eee"}
def on_slider_change():
if st.session_state.local_edit_action == "init":
st.stop()
st.session_state.local_edit_action = "slider"
def on_param_change():
st.session_state.local_edit_action = "param_change"
active_param = st.sidebar.selectbox("active parameter: ", param_set + ["smooth"], index=2, on_change=on_param_change)
st.sidebar.text("Drawing options")
if active_param != "smooth":
plus_or_minus = st.sidebar.slider("Increase or decrease param map: ", -1.0, 1.0, 0.8, 0.05,
on_change=on_slider_change)
else:
sigma = st.sidebar.slider("Sigma: ", 0.1, 10.0, 0.5, 0.1, on_change=on_slider_change)
stroke_width = st.sidebar.slider("Stroke width: ", 1, 50, 20, on_change=on_slider_change)
drawing_mode = st.sidebar.selectbox(
"Drawing tool:", ("freedraw", "line", "rect", "circle", "transform"), on_change=on_slider_change,
)
st.sidebar.text("Viewing options")
if active_param != "smooth":
overlay = st.sidebar.slider("show parameter overlay: ", 0.0, 1.0, 0.8, 0.02, on_change=on_slider_change)
st.sidebar.pyplot(cmap_fig, bbox_inches='tight', pad_inches=0)
st.sidebar.text("Update:")
realtime_update = st.sidebar.checkbox("Update in realtime", True)
clear_after_draw = st.sidebar.checkbox("Clear Canvas after each Stroke", False)
invert_selection = st.sidebar.checkbox("Invert Selection", False)
@st.experimental_memo
def greyscale_org(_org_cuda, content_id): #content_id is used for hashing
if HUGGING_FACE:
wsize = 450
img_org_height, img_org_width = _org_cuda.shape[-2:]
wpercent = (wsize / float(img_org_width))
hsize = int((float(img_org_height) * float(wpercent)))
else:
longest_edge = 670
img_org_height, img_org_width = _org_cuda.shape[-2:]
max_width_height = max(img_org_width, img_org_height)
hsize = int((float(longest_edge) * float(float(img_org_height) / max_width_height)))
wsize = int((float(longest_edge) * float(float(img_org_width) / max_width_height)))
org_img = F.interpolate(_org_cuda, (hsize, wsize), mode="bilinear")
org_img = torch.mean(org_img, dim=1, keepdim=True) / 2.0
org_img = torch_to_np(org_img)[..., np.newaxis].repeat(3, axis=2)
return org_img, hsize, wsize
def generate_param_mask(vp):
greyscale_img, hsize, wsize = greyscale_org(org_cuda, st.session_state["Content_id"])
if active_param != "smooth":
scaled_vp = F.interpolate(vp, (hsize, wsize))[:, effect.vpd.name2idx[active_param]]
param_cmapped = cmap((scaled_vp + 0.5).cpu().numpy())[...,:3][0]
greyscale_img = greyscale_img * (1 - overlay) + param_cmapped * overlay
return Image.fromarray((greyscale_img * 255).astype(np.uint8))
def compute_results(_vp):
if "cached_canvas" in st.session_state and st.session_state["cached_canvas"].image_data is not None:
canvas_result = st.session_state["cached_canvas"]
abc = np_to_torch(canvas_result.image_data.astype(np.float32)).sum(dim=1, keepdim=True).cuda()
if invert_selection:
abc = abc * (- 1.0) + 1.0
img_org_width = org_cuda.shape[-1]
img_org_height = org_cuda.shape[-2]
res_data = F.interpolate(abc, (img_org_height, img_org_width)).squeeze(1)
if active_param != "smooth":
_vp[:, effect.vpd.name2idx[active_param]] += plus_or_minus * res_data
_vp.clamp_(-0.5, 0.5)
else:
gauss2dx = Gauss2DEffect(dxdy=[1.0, 0.0], dim_kernsize=5)
gauss2dy = Gauss2DEffect(dxdy=[0.0, 1.0], dim_kernsize=5)
vp_smoothed = gauss2dx(_vp, torch.tensor(sigma).cuda())
vp_smoothed = gauss2dy(vp_smoothed, torch.tensor(sigma).cuda())
print(res_data.shape)
print(_vp.shape)
print(vp_smoothed.shape)
_vp = torch.lerp(_vp, vp_smoothed, res_data.unsqueeze(1))
with torch.no_grad():
result_cuda = effect(org_cuda, _vp)
_, hsize, wsize = greyscale_org(org_cuda, st.session_state["Content_id"])
result_cuda = F.interpolate(result_cuda, (hsize, wsize), mode="bilinear")
return Image.fromarray((torch_to_np(result_cuda) * 255.0).astype(np.uint8)), _vp
coll1, coll2 = st.columns(2)
coll1.header("Draw Mask:")
coll2.header("Live Result")
# there is no way of removing the canvas history/state without rerunning the whole program.
# therefore, giving the canvas a initial_drawing that differs from the canvas state will clear the background
def mark_canvas_for_redraw():
print("mark for redraw")
st.session_state["mask_edit_counter"] += 1 # change state of initial drawing
initial_drawing = {"random": st.session_state["mask_edit_counter"], "background": "#eee"}
st.session_state["initial_drawing"] = initial_drawing
with coll1:
print("edit action", st.session_state.local_edit_action)
if clear_after_draw and st.session_state.local_edit_action not in ("slider", "param_change", "init"):
if st.session_state.local_edit_action == "redraw":
st.session_state.local_edit_action = "draw"
mark_canvas_for_redraw()
else:
st.session_state.local_edit_action = "redraw"
mask = generate_param_mask(st.session_state["result_vp"])
st.session_state["last_mask"] = mask
# Create a canvas component
canvas_result = st_canvas(
fill_color="rgba(0, 0, 0, 1)",
stroke_width=stroke_width,
background_image=mask,
update_streamlit=realtime_update,
width=mask.width,
height=mask.height,
initial_drawing=st.session_state["initial_drawing"],
drawing_mode=drawing_mode,
key=st.session_state.canvas_key,
)
if canvas_result.json_data is None:
print("stops")
st.stop()
st.session_state["cached_canvas"] = canvas_result
print("compute result")
img_res, vp = compute_results(vp)
st.session_state["last_result"] = img_res
st.session_state["result_vp"] = vp
st.markdown("### Mask: " + active_param)
if st.session_state.local_edit_action in ("slider", "param_change", "init"):
print("set redraw")
st.session_state.local_edit_action = "redraw"
print("plot masks")
texts = []
preview_masks = []
img = st.session_state["last_mask"]
for i, p in enumerate(param_set):
idx = effect.vpd.name2idx[p]
iii = F.interpolate(vp[:, idx:idx + 1] + 0.5, (int(img.height * 0.2), int(img.width * 0.2)))
texts.append(p[:15])
preview_masks.append(torch_to_np(iii))
coll2.image(img_res) # , use_column_width="auto")
ppp = st.columns(len(param_set))
for i, (txt, im) in enumerate(zip(texts, preview_masks)):
ppp[i].text(txt)
ppp[i].image(im, clamp=True)
print("....")
|