File size: 12,101 Bytes
6124669 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import base64
import datetime
import os
import sys
from io import BytesIO
from pathlib import Path
import numpy as np
import requests
import torch
import torch.nn.functional as F
from PIL import Image
PACKAGE_PARENT = 'wise'
SCRIPT_DIR = os.path.dirname(os.path.realpath(os.path.join(os.getcwd(), os.path.expanduser(__file__))))
sys.path.append(os.path.normpath(os.path.join(SCRIPT_DIR, PACKAGE_PARENT)))
import streamlit as st
from streamlit.logger import get_logger
from st_click_detector import click_detector
import streamlit.components.v1 as components
from streamlit_extras.switch_page_button import switch_page
from demo_config import HUGGING_FACE
from parameter_optimization.parametric_styletransfer import single_optimize
from parameter_optimization.parametric_styletransfer import CONFIG as ST_CONFIG
from parameter_optimization.strotss_org import strotss, pil_resize_long_edge_to
import helpers.session_state as session_state
from helpers import torch_to_np, np_to_torch
from effects import get_default_settings, MinimalPipelineEffect
st.set_page_config(layout="wide")
BASE_URL = "https://ivpg.hpi3d.de/wise/wise-demo/images/"
LOGGER = get_logger(__name__)
effect_type = "minimal_pipeline"
if "click_counter" not in st.session_state:
st.session_state.click_counter = 1
if "action" not in st.session_state:
st.session_state["action"] = ""
content_urls = [
{
"name": "Portrait", "id": "portrait",
"src": BASE_URL + "/content/portrait.jpeg"
},
{
"name": "Tuebingen", "id": "tubingen",
"src": BASE_URL + "/content/tubingen.jpeg"
},
{
"name": "Colibri", "id": "colibri",
"src": BASE_URL + "/content/colibri.jpeg"
}
]
style_urls = [
{
"name": "Starry Night, Van Gogh", "id": "starry_night",
"src": BASE_URL + "/style/starry_night.jpg"
},
{
"name": "The Scream, Edward Munch", "id": "the_scream",
"src": BASE_URL + "/style/the_scream.jpg"
},
{
"name": "The Great Wave, Ukiyo-e", "id": "wave",
"src": BASE_URL + "/style/wave.jpg"
},
{
"name": "Woman with Hat, Henry Matisse", "id": "woman_with_hat",
"src": BASE_URL + "/style/woman_with_hat.jpg"
}
]
def last_image_clicked(type="content", action=None, ):
kw = "last_image_clicked" + "_" + type
if action:
session_state.get(**{kw: action})
elif kw not in session_state.get():
return None
else:
return session_state.get()[kw]
@st.cache
def _retrieve_from_id(clicked, urls):
src = [x["src"] for x in urls if x["id"] == clicked][0]
img = Image.open(requests.get(src, stream=True).raw)
return img, src
def store_img_from_id(clicked, urls, imgtype):
img, src = _retrieve_from_id(clicked, urls)
session_state.get(**{f"{imgtype}_im": img, f"{imgtype}_render_src": src, f"{imgtype}_id": clicked})
def img_choice_panel(imgtype, urls, default_choice, expanded):
with st.expander(f"Select {imgtype} image:", expanded=expanded):
html_code = '<div class="column" style="display: flex; flex-wrap: wrap; padding: 0 4px;">'
for url in urls:
html_code += f"<a href='#' id='{url['id']}' style='padding: 0px 5px'><img height='160px' style='margin-top: 8px;' src='{url['src']}'></a>"
html_code += "</div>"
clicked = click_detector(html_code)
if not clicked and st.session_state["action"] not in ("uploaded", "switch_page_from_local_edits", "switch_page_from_presets", "slider_change", "reset"): # default val
store_img_from_id(default_choice, urls, imgtype)
st.write("OR: ")
with st.form(imgtype + "-form", clear_on_submit=True):
uploaded_im = st.file_uploader(f"Load {imgtype} image:", type=["png", "jpg"], )
upload_pressed = st.form_submit_button("Upload")
if upload_pressed and uploaded_im is not None:
img = Image.open(uploaded_im)
buffered = BytesIO()
img.save(buffered, format="JPEG")
encoded = base64.b64encode(buffered.getvalue()).decode()
# session_state.get(uploaded_im=img, content_render_src=f"data:image/jpeg;base64,{encoded}")
session_state.get(**{f"{imgtype}_im": img, f"{imgtype}_render_src": f"data:image/jpeg;base64,{encoded}",
f"{imgtype}_id": "uploaded"})
st.session_state["action"] = "uploaded"
st.write("uploaded.")
last_clicked = last_image_clicked(type=imgtype)
print("last_clicked", last_clicked, "clicked", clicked, "action", st.session_state["action"] )
if not upload_pressed and clicked != "": # trigger when no file uploaded
if last_clicked != clicked: # only activate when content was actually clicked
store_img_from_id(clicked, urls, imgtype)
last_image_clicked(type=imgtype, action=clicked)
st.session_state["action"] = "clicked"
st.session_state.click_counter += 1 # hack to get page to reload at top
state = session_state.get()
st.sidebar.write(f'Selected {imgtype} image:')
st.sidebar.markdown(f'<img src="{state[f"{imgtype}_render_src"]}" width=240px></img>', unsafe_allow_html=True)
def optimize(effect, preset, result_image_placeholder):
content = st.session_state["Content_im"]
style = st.session_state["Style_im"]
result_image_placeholder.text("<- Custom content/style needs to be style transferred")
optimize_button = st.sidebar.button("Optimize Style Transfer")
if optimize_button:
if HUGGING_FACE:
result_image_placeholder.warning("NST optimization is currently disabled in this HuggingFace Space because it takes ~5min to optimize. To try it out, please clone the repo and change the huggingface variable in demo_config.py")
st.stop()
result_image_placeholder.text("Executing NST to create reference image..")
base_dir = f"result/{datetime.datetime.now().strftime(r'%Y-%m-%d %H.%Mh %Ss')}"
os.makedirs(base_dir)
with st.spinner(text="Running NST"):
reference = strotss(pil_resize_long_edge_to(content, 1024),
pil_resize_long_edge_to(style, 1024), content_weight=16.0,
device=torch.device("cuda"), space="uniform")
progress_bar = result_image_placeholder.progress(0.0)
ref_save_path = os.path.join(base_dir, "reference.jpg")
content_save_path = os.path.join(base_dir, "content.jpg")
resize_to = 720
reference = pil_resize_long_edge_to(reference, resize_to)
reference.save(ref_save_path)
content.save(content_save_path)
ST_CONFIG["n_iterations"] = 300
with st.spinner(text="Optimizing parameters.."):
vp, content_img_cuda = single_optimize(effect, preset, "l1", content_save_path, str(ref_save_path),
write_video=False, base_dir=base_dir,
iter_callback=lambda i: progress_bar.progress(
float(i) / ST_CONFIG["n_iterations"]))
return content_img_cuda.detach(), vp.cuda().detach()
else:
if not "result_vp" in st.session_state:
st.stop()
else:
return st.session_state["effect_input"], st.session_state["result_vp"]
@st.cache(hash_funcs={MinimalPipelineEffect: id})
def create_effect():
effect, preset, param_set = get_default_settings(effect_type)
effect.enable_checkpoints()
effect.cuda()
return effect, preset
def load_visual_params(vp_path: str, img_org: Image, org_cuda: torch.Tensor, effect) -> torch.Tensor:
if Path(vp_path).exists():
vp = torch.load(vp_path).detach().clone()
vp = F.interpolate(vp, (img_org.height, img_org.width))
if len(effect.vpd.vp_ranges) == vp.shape[1]:
return vp
# use preset and save it
vp = effect.vpd.preset_tensor(preset, org_cuda, add_local_dims=True)
torch.save(vp, vp_path)
return vp
# @st.cache(hash_funcs={torch.Tensor: id})
@st.experimental_memo
def load_params(content_id, style_id):#, effect):
preoptim_param_path = os.path.join("precomputed", effect_type, content_id, style_id)
img_org = Image.open(os.path.join(preoptim_param_path, "input.png"))
content_cuda = np_to_torch(img_org).cuda()
vp_path = os.path.join(preoptim_param_path, "vp.pt")
vp = load_visual_params(vp_path, img_org, content_cuda, effect)
return content_cuda, vp
def render_effect(effect, content_cuda, vp):
with torch.no_grad():
result_cuda = effect(content_cuda, vp)
img_res = Image.fromarray((torch_to_np(result_cuda) * 255.0).astype(np.uint8))
return img_res
result_container = st.container()
coll1, coll2 = result_container.columns([3,2])
coll1.header("Result")
coll2.header("Global Edits")
result_image_placeholder = coll1.empty()
result_image_placeholder.markdown("## loading..")
img_choice_panel("Content", content_urls, "portrait", expanded=True)
img_choice_panel("Style", style_urls, "starry_night", expanded=True)
state = session_state.get()
content_id = state["Content_id"]
style_id = state["Style_id"]
effect, preset = create_effect()
print("content id, style id", content_id, style_id )
if st.session_state["action"] == "uploaded":
content_img, _vp = optimize(effect, preset, result_image_placeholder)
elif st.session_state["action"] in ("switch_page_from_local_edits", "switch_page_from_presets", "slider_change") or \
content_id == "uploaded" or style_id == "uploaded":
print("restore param")
_vp = st.session_state["result_vp"]
content_img = st.session_state["effect_input"]
else:
print("load_params")
content_img, _vp = load_params(content_id, style_id)#, effect)
vp = torch.clone(_vp)
def reset_params(means, names):
for i, name in enumerate(names):
st.session_state["slider_" + name] = means[i]
def on_slider():
st.session_state["action"] = "slider_change"
with coll2:
show_params_names = [ 'bumpScale', "bumpOpacity", "contourOpacity"]
display_means = []
def create_slider(name):
mean = torch.mean(vp[:, effect.vpd.name2idx[name]]).item()
display_mean = mean + 0.5
display_means.append(display_mean)
if "slider_" + name not in st.session_state or st.session_state["action"] != "slider_change":
st.session_state["slider_" + name] = display_mean
slider = st.slider(f"Mean {name}: ", 0.0, 1.0, step=0.05, key="slider_" + name, on_change=on_slider)
vp[:, effect.vpd.name2idx[name]] += slider - display_mean
vp.clamp_(-0.5, 0.5)
for name in show_params_names:
create_slider(name)
others_idx = set(range(len(effect.vpd.vp_ranges))) - set([effect.vpd.name2idx[name] for name in show_params_names])
others_names = [effect.vpd.vp_ranges[i][0] for i in sorted(list(others_idx))]
other_param = st.selectbox("Other parameters: ", others_names)
create_slider(other_param)
reset_button = st.button("Reset Parameters", on_click=reset_params, args=(display_means, show_params_names))
if reset_button:
st.session_state["action"] = "reset"
st.experimental_rerun()
edit_locally_btn = st.button("Edit Local Parameter Maps")
if edit_locally_btn:
switch_page("Local_edits")
img_res = render_effect(effect, content_img, vp)
st.session_state["result_vp"] = vp
st.session_state["effect_input"] = content_img
st.session_state["last_result"] = img_res
with coll1:
# width = int(img_res.width * 500 / img_res.height)
result_image_placeholder.image(img_res)#, width=width)
# a bit hacky way to return focus to top of page after clicking on images
components.html(
f"""
<p>{st.session_state.click_counter}</p>
<script>
window.parent.document.querySelector('section.main').scrollTo(0, 0);
</script>
""",
height=0
)
|