|
import os |
|
import sys |
|
|
|
import torch.nn.functional as F |
|
import torch |
|
import numpy as np |
|
import matplotlib |
|
from matplotlib import pyplot as plt |
|
import matplotlib.cm |
|
from PIL import Image |
|
|
|
import streamlit as st |
|
from streamlit_drawable_canvas import st_canvas |
|
|
|
|
|
PACKAGE_PARENT = '..' |
|
WISE_DIR = '../wise/' |
|
SCRIPT_DIR = os.path.dirname(os.path.realpath(os.path.join(os.getcwd(), os.path.expanduser(__file__)))) |
|
sys.path.append(os.path.normpath(os.path.join(SCRIPT_DIR, PACKAGE_PARENT))) |
|
sys.path.append(os.path.normpath(os.path.join(SCRIPT_DIR, WISE_DIR))) |
|
|
|
|
|
|
|
from effects.gauss2d_xy_separated import Gauss2DEffect |
|
from effects.minimal_pipeline import MinimalPipelineEffect |
|
from helpers import torch_to_np, np_to_torch |
|
from effects import get_default_settings |
|
from demo_config import HUGGING_FACE |
|
|
|
st.set_page_config(page_title="Editing Demo", layout="wide") |
|
|
|
|
|
@st.cache(hash_funcs={MinimalPipelineEffect: id}) |
|
def local_edits_create_effect(): |
|
effect, preset, param_set = get_default_settings("minimal_pipeline") |
|
effect.enable_checkpoints() |
|
effect.cuda() |
|
return effect, param_set |
|
|
|
|
|
effect, param_set = local_edits_create_effect() |
|
|
|
@st.experimental_memo |
|
def gen_param_strength_fig(): |
|
cmap = matplotlib.cm.get_cmap('plasma') |
|
|
|
gradient = np.linspace(0, 1, 256) |
|
gradient = np.vstack((gradient, gradient)) |
|
fig, ax = plt.subplots(figsize=(3, 0.1)) |
|
fig.patch.set_alpha(0.0) |
|
ax.set_title("parameter strength", fontsize=6.5, loc="left") |
|
ax.imshow(gradient, aspect='auto', cmap=cmap) |
|
ax.set_axis_off() |
|
return fig, cmap |
|
|
|
cmap_fig, cmap = gen_param_strength_fig() |
|
|
|
st.session_state["canvas_key"] = "canvas" |
|
try: |
|
vp = st.session_state["result_vp"] |
|
org_cuda = st.session_state["effect_input"] |
|
except KeyError as e: |
|
print("init run, certain keys not found. If this happens once its ok.") |
|
|
|
if st.session_state["action"] != "switch_page_from_local_edits": |
|
st.session_state.local_edit_action = "init" |
|
|
|
st.session_state["action"] = "switch_page_from_local_edits" |
|
|
|
if "mask_edit_counter" not in st.session_state: |
|
st.session_state["mask_edit_counter"] = 1 |
|
if "initial_drawing" not in st.session_state: |
|
st.session_state["initial_drawing"] = {"random": st.session_state["mask_edit_counter"], "background": "#eee"} |
|
|
|
def on_slider_change(): |
|
if st.session_state.local_edit_action == "init": |
|
st.stop() |
|
st.session_state.local_edit_action = "slider" |
|
|
|
def on_param_change(): |
|
st.session_state.local_edit_action = "param_change" |
|
|
|
active_param = st.sidebar.selectbox("active parameter: ", param_set + ["smooth"], index=2, on_change=on_param_change) |
|
|
|
st.sidebar.text("Drawing options") |
|
if active_param != "smooth": |
|
plus_or_minus = st.sidebar.slider("Increase or decrease param map: ", -1.0, 1.0, 0.8, 0.05, |
|
on_change=on_slider_change) |
|
else: |
|
sigma = st.sidebar.slider("Sigma: ", 0.1, 10.0, 0.5, 0.1, on_change=on_slider_change) |
|
|
|
stroke_width = st.sidebar.slider("Stroke width: ", 1, 50, 20, on_change=on_slider_change) |
|
drawing_mode = st.sidebar.selectbox( |
|
"Drawing tool:", ("freedraw", "line", "rect", "circle", "transform"), on_change=on_slider_change, |
|
) |
|
|
|
st.sidebar.text("Viewing options") |
|
if active_param != "smooth": |
|
overlay = st.sidebar.slider("show parameter overlay: ", 0.0, 1.0, 0.8, 0.02, on_change=on_slider_change) |
|
st.sidebar.pyplot(cmap_fig, bbox_inches='tight', pad_inches=0) |
|
|
|
st.sidebar.text("Update:") |
|
realtime_update = st.sidebar.checkbox("Update in realtime", True) |
|
clear_after_draw = st.sidebar.checkbox("Clear Canvas after each Stroke", False) |
|
invert_selection = st.sidebar.checkbox("Invert Selection", False) |
|
|
|
|
|
@st.experimental_memo |
|
def greyscale_org(_org_cuda, content_id): |
|
if HUGGING_FACE: |
|
wsize = 450 |
|
img_org_height, img_org_width = _org_cuda.shape[-2:] |
|
wpercent = (wsize / float(img_org_width)) |
|
hsize = int((float(img_org_height) * float(wpercent))) |
|
else: |
|
longest_edge = 670 |
|
img_org_height, img_org_width = _org_cuda.shape[-2:] |
|
max_width_height = max(img_org_width, img_org_height) |
|
hsize = int((float(longest_edge) * float(float(img_org_height) / max_width_height))) |
|
wsize = int((float(longest_edge) * float(float(img_org_width) / max_width_height))) |
|
|
|
org_img = F.interpolate(_org_cuda, (hsize, wsize), mode="bilinear") |
|
org_img = torch.mean(org_img, dim=1, keepdim=True) / 2.0 |
|
org_img = torch_to_np(org_img)[..., np.newaxis].repeat(3, axis=2) |
|
return org_img, hsize, wsize |
|
|
|
def generate_param_mask(vp): |
|
greyscale_img, hsize, wsize = greyscale_org(org_cuda, st.session_state["Content_id"]) |
|
if active_param != "smooth": |
|
scaled_vp = F.interpolate(vp, (hsize, wsize))[:, effect.vpd.name2idx[active_param]] |
|
param_cmapped = cmap((scaled_vp + 0.5).cpu().numpy())[...,:3][0] |
|
greyscale_img = greyscale_img * (1 - overlay) + param_cmapped * overlay |
|
return Image.fromarray((greyscale_img * 255).astype(np.uint8)) |
|
|
|
def compute_results(_vp): |
|
if "cached_canvas" in st.session_state and st.session_state["cached_canvas"].image_data is not None: |
|
canvas_result = st.session_state["cached_canvas"] |
|
abc = np_to_torch(canvas_result.image_data.astype(np.float32)).sum(dim=1, keepdim=True).cuda() |
|
|
|
if invert_selection: |
|
abc = abc * (- 1.0) + 1.0 |
|
|
|
img_org_width = org_cuda.shape[-1] |
|
img_org_height = org_cuda.shape[-2] |
|
res_data = F.interpolate(abc, (img_org_height, img_org_width)).squeeze(1) |
|
|
|
if active_param != "smooth": |
|
_vp[:, effect.vpd.name2idx[active_param]] += plus_or_minus * res_data |
|
_vp.clamp_(-0.5, 0.5) |
|
else: |
|
gauss2dx = Gauss2DEffect(dxdy=[1.0, 0.0], dim_kernsize=5) |
|
gauss2dy = Gauss2DEffect(dxdy=[0.0, 1.0], dim_kernsize=5) |
|
|
|
vp_smoothed = gauss2dx(_vp, torch.tensor(sigma).cuda()) |
|
vp_smoothed = gauss2dy(vp_smoothed, torch.tensor(sigma).cuda()) |
|
|
|
print(res_data.shape) |
|
print(_vp.shape) |
|
print(vp_smoothed.shape) |
|
_vp = torch.lerp(_vp, vp_smoothed, res_data.unsqueeze(1)) |
|
|
|
with torch.no_grad(): |
|
result_cuda = effect(org_cuda, _vp) |
|
|
|
_, hsize, wsize = greyscale_org(org_cuda, st.session_state["Content_id"]) |
|
result_cuda = F.interpolate(result_cuda, (hsize, wsize), mode="bilinear") |
|
|
|
return Image.fromarray((torch_to_np(result_cuda) * 255.0).astype(np.uint8)), _vp |
|
|
|
coll1, coll2 = st.columns(2) |
|
coll1.header("Draw Mask:") |
|
coll2.header("Live Result") |
|
|
|
|
|
|
|
def mark_canvas_for_redraw(): |
|
print("mark for redraw") |
|
st.session_state["mask_edit_counter"] += 1 |
|
initial_drawing = {"random": st.session_state["mask_edit_counter"], "background": "#eee"} |
|
st.session_state["initial_drawing"] = initial_drawing |
|
|
|
|
|
with coll1: |
|
print("edit action", st.session_state.local_edit_action) |
|
if clear_after_draw and st.session_state.local_edit_action not in ("slider", "param_change", "init"): |
|
if st.session_state.local_edit_action == "redraw": |
|
st.session_state.local_edit_action = "draw" |
|
mark_canvas_for_redraw() |
|
else: |
|
st.session_state.local_edit_action = "redraw" |
|
|
|
mask = generate_param_mask(st.session_state["result_vp"]) |
|
st.session_state["last_mask"] = mask |
|
|
|
|
|
canvas_result = st_canvas( |
|
fill_color="rgba(0, 0, 0, 1)", |
|
stroke_width=stroke_width, |
|
background_image=mask, |
|
update_streamlit=realtime_update, |
|
width=mask.width, |
|
height=mask.height, |
|
initial_drawing=st.session_state["initial_drawing"], |
|
drawing_mode=drawing_mode, |
|
key=st.session_state.canvas_key, |
|
) |
|
|
|
if canvas_result.json_data is None: |
|
print("stops") |
|
st.stop() |
|
|
|
st.session_state["cached_canvas"] = canvas_result |
|
|
|
print("compute result") |
|
img_res, vp = compute_results(vp) |
|
st.session_state["last_result"] = img_res |
|
st.session_state["result_vp"] = vp |
|
|
|
st.markdown("### Mask: " + active_param) |
|
|
|
if st.session_state.local_edit_action in ("slider", "param_change", "init"): |
|
print("set redraw") |
|
st.session_state.local_edit_action = "redraw" |
|
|
|
|
|
print("plot masks") |
|
texts = [] |
|
preview_masks = [] |
|
img = st.session_state["last_mask"] |
|
for i, p in enumerate(param_set): |
|
idx = effect.vpd.name2idx[p] |
|
iii = F.interpolate(vp[:, idx:idx + 1] + 0.5, (int(img.height * 0.2), int(img.width * 0.2))) |
|
texts.append(p[:15]) |
|
preview_masks.append(torch_to_np(iii)) |
|
|
|
coll2.image(img_res) |
|
ppp = st.columns(len(param_set)) |
|
for i, (txt, im) in enumerate(zip(texts, preview_masks)): |
|
ppp[i].text(txt) |
|
ppp[i].image(im, clamp=True) |
|
|
|
print("....") |
|
|