import os import sys import torch.nn.functional as F import torch PACKAGE_PARENT = '../wise/' SCRIPT_DIR = os.path.dirname(os.path.realpath(os.path.join(os.getcwd(), os.path.expanduser(__file__)))) sys.path.append(os.path.normpath(os.path.join(SCRIPT_DIR, PACKAGE_PARENT))) import numpy as np from PIL import Image import streamlit as st from streamlit_drawable_canvas import st_canvas from effects.minimal_pipeline import MinimalPipelineEffect from helpers.visual_parameter_def import minimal_pipeline_presets, minimal_pipeline_bump_mapping_preset, minimal_pipeline_xdog_preset from helpers import torch_to_np, np_to_torch from effects import get_default_settings st.set_page_config(page_title="Preset Edit Demo", layout="wide") # @st.cache(hash_funcs={OilPaintEffect: id}) @st.cache(hash_funcs={MinimalPipelineEffect: id}) def local_edits_create_effect(): effect, preset, param_set = get_default_settings("minimal_pipeline") effect.enable_checkpoints() effect.cuda() return effect, param_set effect, param_set = local_edits_create_effect() presets = { "original": minimal_pipeline_presets, "bump mapped": minimal_pipeline_bump_mapping_preset, "contoured": minimal_pipeline_xdog_preset } st.session_state["action"] = "switch_page_from_presets" # on switchback, remember effect input active_preset = st.sidebar.selectbox("apply preset: ", ["original", "bump mapped", "contoured"]) blend_strength = st.sidebar.slider("Parameter blending strength (non-hue) : ", 0.0, 1.0, 1.0, 0.05) hue_blend_strength = st.sidebar.slider("Hue-shift blending strength : ", 0.0, 1.0, 1.0, 0.05) st.sidebar.text("Drawing options:") stroke_width = st.sidebar.slider("Stroke width: ", 1, 80, 40) drawing_mode = st.sidebar.selectbox( "Drawing tool:", ("freedraw", "line", "rect", "circle", "transform") ) st.session_state["preset_canvas_key"] ="preset_canvas" vp = torch.clone(st.session_state["result_vp"]) org_cuda = st.session_state["effect_input"] @st.experimental_memo def greyscale_original(_org_cuda, content_id): #content_id is used for hashing if HUGGING_FACE: wsize = 450 img_org_height, img_org_width = _org_cuda.shape[-2:] wpercent = (wsize / float(img_org_width)) hsize = int((float(img_org_height) * float(wpercent))) else: longest_edge = 670 img_org_height, img_org_width = _org_cuda.shape[-2:] max_width_height = max(img_org_width, img_org_height) hsize = int((float(longest_edge) * float(float(img_org_height) / max_width_height))) wsize = int((float(longest_edge) * float(float(img_org_width) / max_width_height))) org_img = F.interpolate(_org_cuda, (hsize, wsize), mode="bilinear") org_img = torch.mean(org_img, dim=1, keepdim=True) / 2.0 org_img = torch_to_np(org_img, multiply_by_255=True)[..., np.newaxis].repeat(3, axis=2) org_img = Image.fromarray(org_img.astype(np.uint8)) return org_img, hsize, wsize greyscale_img, hsize, wsize = greyscale_original(org_cuda, st.session_state["Content_id"]) coll1, coll2 = st.columns(2) coll1.header("Draw Mask") coll2.header("Live Result") with coll1: # Create a canvas component canvas_result = st_canvas( fill_color="rgba(0, 0, 0, 1)", # Fixed fill color with some opacity stroke_width=stroke_width, background_image=greyscale_img, width=greyscale_img.width, height=greyscale_img.height, drawing_mode=drawing_mode, key=st.session_state["preset_canvas_key"] ) res_data = None if canvas_result.image_data is not None: abc = np_to_torch(canvas_result.image_data.astype(np.float)).sum(dim=1, keepdim=True).cuda() img_org_width = org_cuda.shape[-1] img_org_height = org_cuda.shape[-2] res_data = F.interpolate(abc, (img_org_height, img_org_width)).squeeze(1) preset_tensor = effect.vpd.preset_tensor(presets[active_preset], org_cuda, add_local_dims=True) hue = torch.clone(vp[:,effect.vpd.name2idx["hueShift"]]) vp[:] = preset_tensor * res_data * blend_strength + vp[:] * (1 - res_data * blend_strength) vp[:, effect.vpd.name2idx["hueShift"]] = \ preset_tensor[:,effect.vpd.name2idx["hueShift"]] * res_data * hue_blend_strength + hue * (1 - res_data * hue_blend_strength) with torch.no_grad(): result_cuda = effect(org_cuda, vp) img_res = Image.fromarray((torch_to_np(result_cuda) * 255.0).astype(np.uint8)) coll2.image(img_res) apply_btn = st.sidebar.button("Apply") if apply_btn: st.session_state["result_vp"] = vp