Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pyexpat import model
|
2 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
3 |
+
from streamlit_lottie import st_lottie
|
4 |
+
import json
|
5 |
+
import pandas as pd
|
6 |
+
import requests
|
7 |
+
import torch
|
8 |
+
import tensorflow as tf
|
9 |
+
import streamlit as st
|
10 |
+
from streamlit_option_menu import option_menu
|
11 |
+
|
12 |
+
logo = "https://www.google.com/url?sa=i&url=https%3A%2F%2Ffr.depositphotos.com%2Fvector-images%2Frobot-logo.html&psig=AOvVaw14rAtmwJQVSpRFXFY6us7z&ust=1647274982461000&source=images&cd=vfe&ved=0CAsQjRxqFwoTCPjhzdO_w_YCFQAAAAAdAAAAABAD"
|
13 |
+
st.set_page_config(page_icon = logo, page_title ="Bonsoir !", layout = "wide")
|
14 |
+
|
15 |
+
@st.cache(allow_output_mutation=True)
|
16 |
+
def load_tokenizer():
|
17 |
+
tokenizer = GPT2Tokenizer.from_pretrained("gpt2-large")
|
18 |
+
model = GPT2LMHeadModel.from_pretrained("gpt2-large", pad_token_id=tokenizer.eos_token_id)
|
19 |
+
return tokenizer
|
20 |
+
|
21 |
+
@st.cache(allow_output_mutation=True)
|
22 |
+
def load_model():
|
23 |
+
model = GPT2LMHeadModel.from_pretrained("gpt2-large", pad_token_id=tokenizer.eos_token_id)
|
24 |
+
return model
|
25 |
+
|
26 |
+
tokenizer =load_tokenizer()
|
27 |
+
model = load_model()
|
28 |
+
|
29 |
+
def reponse(question, temp=0.5, long=40):
|
30 |
+
|
31 |
+
input_ids = tokenizer.encode(question, return_tensors='pt')
|
32 |
+
output = model.generate(input_ids, max_length=long, temperature =temp, num_beams=5, no_repeat_ngram_size=2, early_stopping=True)
|
33 |
+
rep = tokenizer.decode(output[0], skip_special_tokens=True)
|
34 |
+
return rep
|
35 |
+
|
36 |
+
def load_animation(url: str):
|
37 |
+
r = requests.get(url)
|
38 |
+
if r.status_code != 200 :
|
39 |
+
return None
|
40 |
+
return r.json()
|
41 |
+
|
42 |
+
url = "https://assets10.lottiefiles.com/packages/lf20_96bovdur.json"
|
43 |
+
robot = load_animation(url)
|
44 |
+
|
45 |
+
|
46 |
+
def contact_message():
|
47 |
+
st.header(":mailbox: Let's Get In Touch !")
|
48 |
+
|
49 |
+
name, message = st.columns((1,2))
|
50 |
+
with name:
|
51 |
+
contact_form = """<form action="https://formsubmit.co/[email protected]" method="POST">
|
52 |
+
<input type="text" name="name" placeholder = "Ton Nom" required>
|
53 |
+
<input type="email" name="email" placeholder = "Ton E-mail" required>
|
54 |
+
</form>"""
|
55 |
+
st.markdown(contact_form, unsafe_allow_html=True)
|
56 |
+
|
57 |
+
with message :
|
58 |
+
contact_form2 = """<form action="https://formsubmit.co/[email protected]" method="POST">
|
59 |
+
<textarea name="message" placeholder="Ecris moi !"></textarea>
|
60 |
+
<button type="submit">Send</button>
|
61 |
+
"""
|
62 |
+
st.markdown(contact_form2, unsafe_allow_html=True)
|
63 |
+
|
64 |
+
with open("style2.txt") as f:
|
65 |
+
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
def robot():
|
70 |
+
robot = load_animation(url)
|
71 |
+
col1, col2, col3 = st.columns((5,1,5))
|
72 |
+
|
73 |
+
with col1:
|
74 |
+
|
75 |
+
st.subheader("Choose the length of my answer")
|
76 |
+
long = st.number_input("Be aware that long answers require more time to think !", min_value=10, max_value=250, step =10)
|
77 |
+
|
78 |
+
st.subheader("Ask me something")
|
79 |
+
question = st.text_input('Be aware that I speak only english for the moment !',max_chars = 60)
|
80 |
+
question = str(question)
|
81 |
+
|
82 |
+
ok = st.button('Ask me')
|
83 |
+
|
84 |
+
|
85 |
+
with col3:
|
86 |
+
st_lottie(robot, speed=1, loop=True, quality = "low",height =300, width = 300)
|
87 |
+
if ok:
|
88 |
+
rep = reponse(question, long = long)
|
89 |
+
|
90 |
+
|
91 |
+
rep_style = f'<p style="font-family:Lucida Handwriting; color:#00008B; font-size: 20px;">{rep}</p>'
|
92 |
+
st.markdown(rep_style, unsafe_allow_html=True)
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
def main():
|
99 |
+
st.title("Shall we chat ? Ask me a question")
|
100 |
+
|
101 |
+
with st.sidebar:
|
102 |
+
|
103 |
+
choice = option_menu(
|
104 |
+
menu_title = "Ask Me",
|
105 |
+
options = ["Question", "Envoie Moi Un Message"],
|
106 |
+
icons=["chat","envelope"],
|
107 |
+
menu_icon="robot"
|
108 |
+
)
|
109 |
+
|
110 |
+
if choice == "Envoie Moi Un Message":
|
111 |
+
contact_message()
|
112 |
+
|
113 |
+
elif choice == "Question":
|
114 |
+
robot()
|
115 |
+
|
116 |
+
st.sidebar.subheader(":notebook_with_decorative_cover: Par Maxime Le Tutour")
|
117 |
+
|
118 |
+
st.sidebar.write(" :blue_book: [**Mon LinkedIn**](https://share.streamlit.io/mesmith027/streamlit_webapps/main/MC_pi/streamlit_app.py)", unsafe_allow_html =True)
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
print("ok")
|
135 |
+
|
136 |
+
|
137 |
+
|
138 |
+
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
|
145 |
+
|
146 |
+
|
147 |
+
|
148 |
+
|
149 |
+
if __name__ == '__main__':
|
150 |
+
main()
|