MaximeTut commited on
Commit
9fd6a30
1 Parent(s): 5fcf54d

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +150 -0
app.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pyexpat import model
2
+ from transformers import GPT2LMHeadModel, GPT2Tokenizer
3
+ from streamlit_lottie import st_lottie
4
+ import json
5
+ import pandas as pd
6
+ import requests
7
+ import torch
8
+ import tensorflow as tf
9
+ import streamlit as st
10
+ from streamlit_option_menu import option_menu
11
+
12
+ logo = "https://www.google.com/url?sa=i&url=https%3A%2F%2Ffr.depositphotos.com%2Fvector-images%2Frobot-logo.html&psig=AOvVaw14rAtmwJQVSpRFXFY6us7z&ust=1647274982461000&source=images&cd=vfe&ved=0CAsQjRxqFwoTCPjhzdO_w_YCFQAAAAAdAAAAABAD"
13
+ st.set_page_config(page_icon = logo, page_title ="Bonsoir !", layout = "wide")
14
+
15
+ @st.cache(allow_output_mutation=True)
16
+ def load_tokenizer():
17
+ tokenizer = GPT2Tokenizer.from_pretrained("gpt2-large")
18
+ model = GPT2LMHeadModel.from_pretrained("gpt2-large", pad_token_id=tokenizer.eos_token_id)
19
+ return tokenizer
20
+
21
+ @st.cache(allow_output_mutation=True)
22
+ def load_model():
23
+ model = GPT2LMHeadModel.from_pretrained("gpt2-large", pad_token_id=tokenizer.eos_token_id)
24
+ return model
25
+
26
+ tokenizer =load_tokenizer()
27
+ model = load_model()
28
+
29
+ def reponse(question, temp=0.5, long=40):
30
+
31
+ input_ids = tokenizer.encode(question, return_tensors='pt')
32
+ output = model.generate(input_ids, max_length=long, temperature =temp, num_beams=5, no_repeat_ngram_size=2, early_stopping=True)
33
+ rep = tokenizer.decode(output[0], skip_special_tokens=True)
34
+ return rep
35
+
36
+ def load_animation(url: str):
37
+ r = requests.get(url)
38
+ if r.status_code != 200 :
39
+ return None
40
+ return r.json()
41
+
42
+ url = "https://assets10.lottiefiles.com/packages/lf20_96bovdur.json"
43
+ robot = load_animation(url)
44
+
45
+
46
+ def contact_message():
47
+ st.header(":mailbox: Let's Get In Touch !")
48
+
49
+ name, message = st.columns((1,2))
50
+ with name:
51
+ contact_form = """<form action="https://formsubmit.co/[email protected]" method="POST">
52
+ <input type="text" name="name" placeholder = "Ton Nom" required>
53
+ <input type="email" name="email" placeholder = "Ton E-mail" required>
54
+ </form>"""
55
+ st.markdown(contact_form, unsafe_allow_html=True)
56
+
57
+ with message :
58
+ contact_form2 = """<form action="https://formsubmit.co/[email protected]" method="POST">
59
+ <textarea name="message" placeholder="Ecris moi !"></textarea>
60
+ <button type="submit">Send</button>
61
+ """
62
+ st.markdown(contact_form2, unsafe_allow_html=True)
63
+
64
+ with open("style2.txt") as f:
65
+ st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
66
+
67
+
68
+
69
+ def robot():
70
+ robot = load_animation(url)
71
+ col1, col2, col3 = st.columns((5,1,5))
72
+
73
+ with col1:
74
+
75
+ st.subheader("Choose the length of my answer")
76
+ long = st.number_input("Be aware that long answers require more time to think !", min_value=10, max_value=250, step =10)
77
+
78
+ st.subheader("Ask me something")
79
+ question = st.text_input('Be aware that I speak only english for the moment !',max_chars = 60)
80
+ question = str(question)
81
+
82
+ ok = st.button('Ask me')
83
+
84
+
85
+ with col3:
86
+ st_lottie(robot, speed=1, loop=True, quality = "low",height =300, width = 300)
87
+ if ok:
88
+ rep = reponse(question, long = long)
89
+
90
+
91
+ rep_style = f'<p style="font-family:Lucida Handwriting; color:#00008B; font-size: 20px;">{rep}</p>'
92
+ st.markdown(rep_style, unsafe_allow_html=True)
93
+
94
+
95
+
96
+
97
+
98
+ def main():
99
+ st.title("Shall we chat ? Ask me a question")
100
+
101
+ with st.sidebar:
102
+
103
+ choice = option_menu(
104
+ menu_title = "Ask Me",
105
+ options = ["Question", "Envoie Moi Un Message"],
106
+ icons=["chat","envelope"],
107
+ menu_icon="robot"
108
+ )
109
+
110
+ if choice == "Envoie Moi Un Message":
111
+ contact_message()
112
+
113
+ elif choice == "Question":
114
+ robot()
115
+
116
+ st.sidebar.subheader(":notebook_with_decorative_cover: Par Maxime Le Tutour")
117
+
118
+ st.sidebar.write(" :blue_book: [**Mon LinkedIn**](https://share.streamlit.io/mesmith027/streamlit_webapps/main/MC_pi/streamlit_app.py)", unsafe_allow_html =True)
119
+
120
+
121
+
122
+
123
+
124
+
125
+
126
+
127
+
128
+
129
+
130
+
131
+
132
+
133
+
134
+ print("ok")
135
+
136
+
137
+
138
+
139
+
140
+
141
+
142
+
143
+
144
+
145
+
146
+
147
+
148
+
149
+ if __name__ == '__main__':
150
+ main()