Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,889 Bytes
b6fa3b6 d02b0d1 b6fa3b6 b0db85d b6fa3b6 b0db85d b6fa3b6 d02b0d1 91c00b7 79b926d 7377d18 79b926d 7377d18 79b926d b0db85d 7377d18 91c00b7 b0db85d 7377d18 b0db85d d02b0d1 b0db85d b6fa3b6 2d6886d b0db85d 6c67d55 d02b0d1 6c67d55 f04732f b6fa3b6 f04732f 79b926d d5fb61d b6fa3b6 d5fb61d b6fa3b6 1117f0e 8eae1e0 79b926d 1117f0e 70f2766 79b926d 70f2766 79b926d d5fb61d 70f2766 b6fa3b6 70f2766 58cf028 79b926d f04732f 79b926d b0db85d 7377d18 b0db85d 7377d18 50def22 d5fb61d b6fa3b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
import time
from threading import Thread
import gradio as gr
import spaces
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM
from transformers import TextIteratorStreamer
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# thanks to https://huggingface.co/ysharma
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<img src="https://cdn-thumbnails.huggingface.co/social-thumbnails/models/microsoft/Phi-3-vision-128k-instruct.png" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; ">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Microsoft's Phi3-Vision-128k-Context</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Phi-3-Vision is a 4.2B parameter multimodal model that brings together language and vision capabilities.</p>
</div>
"""
user_prompt = '<|user|>\n'
assistant_prompt = '<|assistant|>\n'
prompt_suffix = "<|end|>\n"
model_id = "microsoft/Phi-3-vision-128k-instruct"
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype="auto",
trust_remote_code=True,
)
model.to("cuda:0")
@spaces.GPU
def bot_streaming(message, history):
print(f'message is - {message}')
print(f'history is - {history}')
if message["files"]:
# message["files"][-1] is a Dict or just a string
if type(message["files"][-1]) == dict:
image = message["files"][-1]["path"]
else:
image = message["files"][-1]
else:
# if there's no image uploaded for this turn, look for images in the past turns
# kept inside tuples, take the last one
for hist in history:
if type(hist[0]) == tuple:
image = hist[0][0]
try:
if image is None:
# Handle the case where image is None
raise gr.Error("You need to upload an image for Phi3-Vision to work. Close the error and try again with an Image.")
except NameError:
# Handle the case where 'image' is not defined at all
raise gr.Error("You need to upload an image for Phi3-Vision to work. Close the error and try again with an Image.")
conversation = []
flag=False
for user, assistant in history:
if assistant is None:
#pass
flag=True
conversation.extend([{"role": "user", "content":""}])
continue
if flag==True:
conversation[0]['content'] = f"<|image_1|>\n{user}"
conversation.extend([{"role": "assistant", "content": assistant}])
flag=False
continue
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
if len(history) == 0:
conversation.append({"role": "user", "content": f"<|image_1|>\n{message['text']}"})
else:
conversation.append({"role": "user", "content": message['text']})
print(f"prompt is -\n{conversation}")
prompt = processor.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
image = Image.open(image)
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True, "skip_prompt": True, 'clean_up_tokenization_spaces':False,})
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False, temperature=0.0, eos_token_id=processor.tokenizer.eos_token_id,)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
chatbot = gr.Chatbot(placeholder=PLACEHOLDER, scale=1)
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...",
show_label=False)
with gr.Blocks(fill_height=True, ) as demo:
gr.ChatInterface(
fn=bot_streaming,
title="Phi-3 Vision 128k Instruct",
examples=[{"text": "What is on the flower?", "files": ["./bee.jpg"]},
{"text": "How to make this pastry?", "files": ["./baklava.png"]}],
description="Try [microsoft/Phi-3-vision-128k-instruct](https://huggingface.co/microsoft/Phi-3-vision-128k-instruct). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.",
stop_btn="Stop Generation",
multimodal=True,
textbox=chat_input,
chatbot=chatbot,
)
demo.queue(api_open=False)
demo.launch(show_api=False, share=False)
|