File size: 4,889 Bytes
b6fa3b6
 
d02b0d1
b6fa3b6
b0db85d
b6fa3b6
 
b0db85d
b6fa3b6
d02b0d1
91c00b7
 
 
79b926d
7377d18
 
79b926d
 
 
7377d18
 
79b926d
b0db85d
 
 
7377d18
91c00b7
 
b0db85d
7377d18
b0db85d
d02b0d1
b0db85d
b6fa3b6
2d6886d
b0db85d
6c67d55
d02b0d1
6c67d55
f04732f
b6fa3b6
f04732f
 
79b926d
 
d5fb61d
b6fa3b6
 
 
 
 
d5fb61d
 
 
 
b6fa3b6
 
1117f0e
8eae1e0
 
79b926d
1117f0e
70f2766
79b926d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70f2766
79b926d
 
 
 
d5fb61d
70f2766
 
b6fa3b6
70f2766
 
58cf028
79b926d
f04732f
 
79b926d
b0db85d
 
7377d18
 
b0db85d
 
 
 
 
 
 
 
 
7377d18
50def22
d5fb61d
b6fa3b6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import time
from threading import Thread

import gradio as gr
import spaces
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM
from transformers import TextIteratorStreamer

import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

# thanks to https://huggingface.co/ysharma
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
   <img src="https://cdn-thumbnails.huggingface.co/social-thumbnails/models/microsoft/Phi-3-vision-128k-instruct.png" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55;  "> 
   <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Microsoft's Phi3-Vision-128k-Context</h1>
   <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Phi-3-Vision is a 4.2B parameter multimodal model that brings together language and vision capabilities.</p>
</div>
"""

user_prompt = '<|user|>\n'
assistant_prompt = '<|assistant|>\n'
prompt_suffix = "<|end|>\n"



model_id = "microsoft/Phi-3-vision-128k-instruct"

processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)

model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype="auto",
    trust_remote_code=True,
)

model.to("cuda:0")


@spaces.GPU
def bot_streaming(message, history):
    print(f'message is - {message}')
    print(f'history is - {history}')
    if message["files"]:
        # message["files"][-1] is a Dict or just a string
        if type(message["files"][-1]) == dict:
            image = message["files"][-1]["path"]
        else:
            image = message["files"][-1]
    else:
        # if there's no image uploaded for this turn, look for images in the past turns
        # kept inside tuples, take the last one
        for hist in history:
            if type(hist[0]) == tuple:
                image = hist[0][0]
    try:
        if image is None:
            # Handle the case where image is None
            raise gr.Error("You need to upload an image for Phi3-Vision to work. Close the error and try again with an Image.")
    except NameError:
        # Handle the case where 'image' is not defined at all
        raise gr.Error("You need to upload an image for Phi3-Vision to work. Close the error and try again with an Image.")

    conversation = []
    flag=False
    for user, assistant in history:
        if assistant is None:
            #pass
            flag=True
            conversation.extend([{"role": "user", "content":""}])
            continue
        if flag==True:
            conversation[0]['content'] = f"<|image_1|>\n{user}"   
            conversation.extend([{"role": "assistant", "content": assistant}])
            flag=False
            continue
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])

    if len(history) == 0:
        conversation.append({"role": "user", "content": f"<|image_1|>\n{message['text']}"})
    else:
        conversation.append({"role": "user", "content": message['text']})
    print(f"prompt is -\n{conversation}")
    prompt = processor.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
    image = Image.open(image)
    inputs = processor(prompt, image, return_tensors="pt").to("cuda:0") 

    streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True, "skip_prompt": True, 'clean_up_tokenization_spaces':False,}) 
    generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False, temperature=0.0, eos_token_id=processor.tokenizer.eos_token_id,)

    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    buffer = ""
    for new_text in streamer:
        buffer += new_text
        yield buffer


chatbot = gr.Chatbot(placeholder=PLACEHOLDER, scale=1)
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...",
                                  show_label=False)
with gr.Blocks(fill_height=True, ) as demo:
    gr.ChatInterface(
        fn=bot_streaming,
        title="Phi-3 Vision 128k Instruct",
        examples=[{"text": "What is on the flower?", "files": ["./bee.jpg"]},
                  {"text": "How to make this pastry?", "files": ["./baklava.png"]}],
        description="Try [microsoft/Phi-3-vision-128k-instruct](https://huggingface.co/microsoft/Phi-3-vision-128k-instruct). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.",
        stop_btn="Stop Generation",
        multimodal=True,
        textbox=chat_input,
        chatbot=chatbot,
    )

demo.queue(api_open=False)
demo.launch(show_api=False, share=False)