MeetJivani commited on
Commit
cb217fc
1 Parent(s): 990b5e2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -24
app.py CHANGED
@@ -312,7 +312,7 @@ def proc_submission(
312
  settings["remove_stopwords"] = predrop_stopwords
313
  settings["model_name"] = model_name
314
  saved_file = saves_summary(summarize_output=_summaries, outpath=None, **settings)
315
- return html, full_summary, saved_file
316
 
317
 
318
  def load_single_example_text(
@@ -571,14 +571,14 @@ if __name__ == "__main__":
571
  type="file",
572
  interactive=False,
573
  )
574
- # with gr.Column(variant="compact"):
575
- # gr.Markdown(
576
- # "Scores **roughly** represent the summary quality as a measure of the model's 'confidence'. less-negative numbers (closer to 0) are better."
577
- # )
578
- # summary_scores = gr.Textbox(
579
- # label="Summary Scores",
580
- # placeholder="Summary scores will appear here",
581
- # )
582
  with gr.Column(variant="panel"):
583
  gr.Markdown("### **Summary Output**")
584
  summary_text = gr.HTML(
@@ -611,19 +611,19 @@ if __name__ == "__main__":
611
  # )
612
 
613
  gr.Markdown("---")
614
- # with gr.Column():
615
- # gr.Markdown("### Advanced Settings")
616
- # gr.Markdown(
617
- # "Refer to [the guide doc](https://gist.github.com/pszemraj/722a7ba443aa3a671b02d87038375519) for what these are, and how they impact _quality_ and _speed_."
618
- # )
619
- # with gr.Row(variant="compact"):
620
- # length_penalty = gr.Slider(
621
- # minimum=0.3,
622
- # maximum=1.1,
623
- # label="length penalty",
624
- # value=0.7,
625
- # step=0.05,
626
- # )
627
  # token_batch_length = gr.Radio(
628
  # choices=TOKEN_BATCH_OPTIONS,
629
  # label="token batch length",
@@ -673,9 +673,10 @@ if __name__ == "__main__":
673
  fn=proc_submission,
674
  inputs=[
675
  input_text,
676
- model_name
 
677
  ],
678
- outputs=[output_text, summary_text, text_file],
679
  )
680
  # aggregate_button.click(
681
  # fn=aggregate_text,
 
312
  settings["remove_stopwords"] = predrop_stopwords
313
  settings["model_name"] = model_name
314
  saved_file = saves_summary(summarize_output=_summaries, outpath=None, **settings)
315
+ return html, full_summary,scores_out, saved_file
316
 
317
 
318
  def load_single_example_text(
 
571
  type="file",
572
  interactive=False,
573
  )
574
+ with gr.Column(variant="compact"):
575
+ gr.Markdown(
576
+ "Scores **roughly** represent the summary quality as a measure of the model's 'confidence'. less-negative numbers (closer to 0) are better."
577
+ )
578
+ summary_scores = gr.Textbox(
579
+ label="Summary Scores",
580
+ placeholder="Summary scores will appear here",
581
+ )
582
  with gr.Column(variant="panel"):
583
  gr.Markdown("### **Summary Output**")
584
  summary_text = gr.HTML(
 
611
  # )
612
 
613
  gr.Markdown("---")
614
+ with gr.Column():
615
+ gr.Markdown("### Advanced Settings")
616
+ # gr.Markdown(
617
+ # "Refer to [the guide doc](https://gist.github.com/pszemraj/722a7ba443aa3a671b02d87038375519) for what these are, and how they impact _quality_ and _speed_."
618
+ # )
619
+ with gr.Row(variant="compact"):
620
+ length_penalty = gr.Slider(
621
+ minimum=0.3,
622
+ maximum=1.1,
623
+ label="length penalty",
624
+ value=0.7,
625
+ step=0.05,
626
+ )
627
  # token_batch_length = gr.Radio(
628
  # choices=TOKEN_BATCH_OPTIONS,
629
  # label="token batch length",
 
673
  fn=proc_submission,
674
  inputs=[
675
  input_text,
676
+ model_name,
677
+ length_penalty
678
  ],
679
+ outputs=[output_text, summary_text,summary_scores, text_file],
680
  )
681
  # aggregate_button.click(
682
  # fn=aggregate_text,