""" app.py - the main module for the gradio app for summarization Usage: python app.py Environment Variables: USE_TORCH (str): whether to use torch (1) or not (0) TOKENIZERS_PARALLELISM (str): whether to use parallelism (true) or not (false) Optional Environment Variables: APP_MAX_WORDS (int): the maximum number of words to use for summarization APP_OCR_MAX_PAGES (int): the maximum number of pages to use for OCR """ import contextlib import gc import logging import os import random import re import time from pathlib import Path import pprint as pp os.environ["USE_TORCH"] = "1" os.environ["TOKENIZERS_PARALLELISM"] = "false" logging.basicConfig( level=logging.INFO, format="%(asctime)s [%(levelname)s] %(name)s - %(message)s", ) import gradio as gr import nltk import torch from aggregate import BatchAggregator from cleantext import clean from doctr.models import ocr_predictor from pdf2text import convert_PDF_to_Text from summarize import load_model_and_tokenizer, summarize_via_tokenbatches from utils import ( extract_batches, load_example_filenames, saves_summary, textlist2html, truncate_word_count, remove_stagnant_files, ) _here = Path(__file__).parent nltk.download("punkt", force=True, quiet=True) nltk.download("popular", force=True, quiet=True) MODEL_OPTIONS = [ "pszemraj/long-t5-tglobal-base-16384-book-summary", "pszemraj/long-t5-tglobal-base-sci-simplify", "pszemraj/long-t5-tglobal-base-sci-simplify-elife", "pszemraj/long-t5-tglobal-base-16384-booksci-summary-v1", "pszemraj/pegasus-x-large-book-summary", ] # models users can choose from SUMMARY_PLACEHOLDER = "

Output will appear below:

" # if duplicating space,, uncomment this line to adjust the max words # os.environ["APP_MAX_WORDS"] = str(2048) # set the max words to 2048 # os.environ["APP_OCR_MAX_PAGES"] = str(40) # set the max pages to 40 aggregator = BatchAggregator("MBZUAI/LaMini-Flan-T5-783M") def aggregate_text( summary_text: str, text_file: gr.inputs.File = None, ): """ Aggregate the text from the batches. NOTE: you should probably include passing the BatchAggregator object as a parameter if using this code outside of this file. :param batches_html: The batches to aggregate, in html format """ if summary_text is None or summary_text == SUMMARY_PLACEHOLDER: logging.error("No text provided. Make sure a summary has been generated first.") return "Error: No text provided. Make sure a summary has been generated first." try: extracted_batches = extract_batches(summary_text) except Exception as e: logging.info(summary_text) logging.info(f"the batches html is: {type(summary_text)}") return f"Error: unable to extract batches - check input: {e}" if not extracted_batches: logging.error("unable to extract batches - check input") return "Error: unable to extract batches - check input" out_path = None if text_file is not None: out_path = text_file.name # assuming name attribute stores the file path content_batches = [batch["content"] for batch in extracted_batches] full_summary = aggregator.infer_aggregate(content_batches) # if a path that exists is provided, save the summary with markdown formatting if out_path: out_path = Path(out_path) try: with open(out_path, "a", encoding="utf-8") as f: f.write("\n\n### Aggregate Summary\n\n") f.write( "- This is an instruction-based LLM aggregation of the previous 'summary batches'.\n" ) f.write(f"- Aggregation model: {aggregator.model_name}\n\n") f.write(f"{full_summary}\n\n") logging.info(f"Updated {out_path} with aggregate summary") except Exception as e: logging.error(f"unable to update {out_path} with aggregate summary: {e}") full_summary_html = f"""

Aggregate Summary:

{full_summary}

""" return full_summary_html def predict( input_text: str, model_name: str, token_batch_length: int = 1024, empty_cache: bool = True, **settings, ) -> list: """ predict - helper fn to support multiple models for summarization at once :param str input_text: the input text to summarize :param str model_name: model name to use :param int token_batch_length: the length of the token batches to use :param bool empty_cache: whether to empty the cache before loading a new= model :return: list of dicts with keys "summary" and "score" """ if torch.cuda.is_available() and empty_cache: torch.cuda.empty_cache() model, tokenizer = load_model_and_tokenizer(model_name) summaries = summarize_via_tokenbatches( input_text, model, tokenizer, batch_length=token_batch_length, **settings, ) del model del tokenizer gc.collect() return summaries def proc_submission( input_text: str, model_name: str, num_beams: int, token_batch_length: int, length_penalty: float, repetition_penalty: float, no_repeat_ngram_size: int, max_input_length: int = 6144, ): """ proc_submission - a helper function for the gradio module to process submissions Args: input_text (str): the input text to summarize model_name (str): the hf model tag of the model to use num_beams (int): the number of beams to use token_batch_length (int): the length of the token batches to use length_penalty (float): the length penalty to use repetition_penalty (float): the repetition penalty to use no_repeat_ngram_size (int): the no repeat ngram size to use max_input_length (int, optional): the maximum input length to use. Defaults to 6144. Note: the max_input_length is set to 6144 by default, but can be changed by setting the environment variable APP_MAX_WORDS to a different value. Returns: str in HTML format, string of the summary, str of score """ remove_stagnant_files() # clean up old files settings = { "length_penalty": float(length_penalty), "repetition_penalty": float(repetition_penalty), "no_repeat_ngram_size": int(no_repeat_ngram_size), "encoder_no_repeat_ngram_size": 4, "num_beams": int(num_beams), "min_length": 4, "max_length": int(token_batch_length // 4), "early_stopping": True, "do_sample": False, } max_input_length = int(os.environ.get("APP_MAX_WORDS", max_input_length)) logging.info(f"max_input_length set to: {max_input_length}") st = time.perf_counter() history = {} clean_text = clean(input_text, lower=False) processed = truncate_word_count(clean_text, max_words=max_input_length) if processed["was_truncated"]: tr_in = processed["truncated_text"] # create elaborate HTML warning input_wc = re.split(r"\s+", input_text) msg = f"""

Warning

Input text was truncated to {max_input_length} words. That's about {100*max_input_length/len(input_wc):.2f}% of the submission.

""" logging.warning(msg) history["WARNING"] = msg else: tr_in = input_text msg = None if len(input_text) < 50: # this is essentially a different case from the above msg = f"""

no text

Error

Input text is too short to summarize. Detected {len(input_text)} characters. Please load text by selecting an example from the dropdown menu or by pasting text into the text box.

""" logging.warning(msg) logging.warning("RETURNING EMPTY STRING") history["WARNING"] = msg return msg, "No summary generated.", "", [] _summaries = predict( input_text=tr_in, model_name=model_name, token_batch_length=token_batch_length, **settings, ) sum_text = [s["summary"][0].strip() + "\n" for s in _summaries] sum_scores = [ f" - Batch Summary {i}: {round(s['summary_score'],4)}" for i, s in enumerate(_summaries) ] full_summary = textlist2html(sum_text) history["Summary Scores"] = "

" scores_out = "\n".join(sum_scores) rt = round((time.perf_counter() - st) / 60, 2) logging.info(f"Runtime: {rt} minutes") html = "" html += f"

Runtime: {rt} minutes with model: {model_name}

" if msg is not None: html += msg html += "" # save to file settings["model_name"] = model_name saved_file = saves_summary(summarize_output=_summaries, outpath=None, **settings) return html, full_summary, scores_out, saved_file def load_single_example_text( example_path: str or Path, max_pages: int = 20, ) -> str: """ load_single_example_text - loads a single example text file :param strorPath example_path: name of the example to load :param int max_pages: the maximum number of pages to load from a PDF :return str: the text of the example """ global name_to_path full_ex_path = name_to_path[example_path] full_ex_path = Path(full_ex_path) if full_ex_path.suffix in [".txt", ".md"]: with open(full_ex_path, "r", encoding="utf-8", errors="ignore") as f: raw_text = f.read() text = clean(raw_text, lower=False) elif full_ex_path.suffix == ".pdf": logging.info(f"Loading PDF file {full_ex_path}") max_pages = int(os.environ.get("APP_MAX_PAGES", max_pages)) logging.info(f"max_pages set to: {max_pages}") conversion_stats = convert_PDF_to_Text( full_ex_path, ocr_model=ocr_model, max_pages=max_pages, ) text = conversion_stats["converted_text"] else: logging.error(f"Unknown file type {full_ex_path.suffix}") text = "ERROR - check example path" return text def load_uploaded_file(file_obj, max_pages: int = 20, lower: bool = False) -> str: """ load_uploaded_file - loads a file uploaded by the user :param file_obj (POTENTIALLY list): Gradio file object inside a list :param int max_pages: the maximum number of pages to load from a PDF :param bool lower: whether to lowercase the text :return str: the text of the file """ logger = logging.getLogger(__name__) # check if mysterious file object is a list if isinstance(file_obj, list): file_obj = file_obj[0] file_path = Path(file_obj.name) try: logger.info(f"Loading file:\t{file_path}") if file_path.suffix in [".txt", ".md"]: with open(file_path, "r", encoding="utf-8", errors="ignore") as f: raw_text = f.read() text = clean(raw_text, lower=lower) elif file_path.suffix == ".pdf": logger.info(f"loading as PDF file {file_path}") max_pages = int(os.environ.get("APP_MAX_PAGES", max_pages)) logger.info(f"max_pages set to: {max_pages}") conversion_stats = convert_PDF_to_Text( file_path, ocr_model=ocr_model, max_pages=max_pages, ) text = conversion_stats["converted_text"] else: logger.error(f"Unknown file type:\t{file_path.suffix}") text = "ERROR - check file - unknown file type. PDF, TXT, and MD are supported." return text except Exception as e: logger.error(f"Trying to load file:\t{file_path},\nerror:\t{e}") return "Error: Could not read file. Ensure that it is a valid text file with encoding UTF-8 if text, and a PDF if PDF." if __name__ == "__main__": logger = logging.getLogger(__name__) logger.info("Starting app instance") logger.info("Loading OCR model") with contextlib.redirect_stdout(None): ocr_model = ocr_predictor( "db_resnet50", "crnn_mobilenet_v3_large", pretrained=True, assume_straight_pages=True, ) name_to_path = load_example_filenames(_here / "examples") logger.info(f"Loaded {len(name_to_path)} examples") demo = gr.Blocks(title="Document Summarization with Long-Document Transformers") _examples = list(name_to_path.keys()) with demo: gr.Markdown("# Document Summarization with Long-Document Transformers") gr.Markdown( "An example use case for fine-tuned long document transformers. Model(s) are trained on [book summaries](https://huggingface.co/datasets/kmfoda/booksum). Architectures in this demo are [LongT5-base](https://huggingface.co/pszemraj/long-t5-tglobal-base-16384-book-summary) and [Pegasus-X-Large](https://huggingface.co/pszemraj/pegasus-x-large-book-summary)." ) with gr.Column(): gr.Markdown("## Load Inputs & Select Parameters") gr.Markdown( """Enter/paste text below, or upload a file. Pick a model & adjust params (_optional_), and press **Summarize!** See [the guide doc](https://gist.github.com/pszemraj/722a7ba443aa3a671b02d87038375519) for details. """ ) with gr.Row(variant="compact"): with gr.Column(scale=0.5, variant="compact"): model_name = gr.Dropdown( choices=MODEL_OPTIONS, value=MODEL_OPTIONS[0], label="Model Name", ) num_beams = gr.Radio( choices=[2, 3, 4], label="Beam Search: # of Beams", value=2, ) load_examples_button = gr.Button( "Load Example in Dropdown", ) load_file_button = gr.Button("Load an Uploaded File") with gr.Column(variant="compact"): example_name = gr.Dropdown( _examples, label="Examples", value=random.choice(_examples), ) uploaded_file = gr.File( label="File Upload", file_count="single", file_types=[".txt", ".md", ".pdf"], type="file", ) with gr.Row(): input_text = gr.Textbox( lines=4, max_lines=12, label="Input Text (for summarization)", placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)", ) gr.Markdown("---") with gr.Column(): gr.Markdown("## Generate Summary") gr.Markdown( "_Summarization should take ~1-2 minutes for most settings, but may extend up to 5-10 minutes in some scenarios._" ) summarize_button = gr.Button( "Summarize!", variant="primary", ) # TODO: collapse button to be on same line as something else output_text = gr.HTML("

Output will appear below:

") with gr.Column(): gr.Markdown("#### Results & Scores") with gr.Row(): with gr.Column(variant="compact"): gr.Markdown( "Download the summary as a text file, with parameters and scores." ) text_file = gr.File( label="Download as Text File", file_count="single", type="file", interactive=False, ) with gr.Column(variant="compact"): gr.Markdown( "Scores represent the summary quality **roughly** as a measure of the model's 'confidence'. less-negative numbers (closer to 0) are better." ) summary_scores = gr.Textbox( label="Summary Scores", placeholder="Summary scores will appear here", ) with gr.Column(): gr.Markdown("#### **Summary Output**") summary_text = gr.HTML( label="Summary", value="Summary will appear here!" ) with gr.Column(): gr.Markdown("##### **Aggregate Summary Batches**") aggregate_button = gr.Button( "Aggregate!", variant="primary", ) # TODO: collapse button to be on same line as something else aggregated_summary = gr.HTML(label="Aggregate Summary", value="") gr.Markdown("---") with gr.Column(): gr.Markdown("### Advanced Settings") gr.Markdown( "Refer to [the guide doc](https://gist.github.com/pszemraj/722a7ba443aa3a671b02d87038375519) for what these are, and how they impact _quality_ and _speed_." ) with gr.Row(variant="compact"): length_penalty = gr.Slider( minimum=0.5, maximum=1.0, label="length penalty", value=0.7, step=0.05, ) token_batch_length = gr.Radio( choices=[1024, 1536, 2048, 2560, 3072], label="token batch length", value=2048, ) with gr.Row(variant="compact"): repetition_penalty = gr.Slider( minimum=1.0, maximum=5.0, label="repetition penalty", value=1.5, step=0.1, ) no_repeat_ngram_size = gr.Radio( choices=[2, 3, 4], label="no repeat ngram size", value=3, ) with gr.Column(): gr.Markdown("### About") gr.Markdown( "- Models are fine-tuned on the [BookSum dataset](https://arxiv.org/abs/2105.08209). The goal was to create a model that generalizes well and is useful for summarizing text in academic and everyday use." ) gr.Markdown( "- _Update April 2023:_ Additional models fine-tuned on the [PLOS](https://huggingface.co/datasets/pszemraj/scientific_lay_summarisation-plos-norm) and [ELIFE](https://huggingface.co/datasets/pszemraj/scientific_lay_summarisation-elife-norm) subsets of the [scientific lay summaries](https://arxiv.org/abs/2210.09932) dataset are available (see dropdown at the top)." ) gr.Markdown( "Adjust the max input words & max PDF pages for OCR by duplicating this space and [setting the environment variables](https://huggingface.co/docs/hub/spaces-overview#managing-secrets) `APP_MAX_WORDS` and `APP_OCR_MAX_PAGES` to the desired integer values." ) gr.Markdown("---") load_examples_button.click( fn=load_single_example_text, inputs=[example_name], outputs=[input_text] ) load_file_button.click( fn=load_uploaded_file, inputs=uploaded_file, outputs=[input_text] ) summarize_button.click( fn=proc_submission, inputs=[ input_text, model_name, num_beams, token_batch_length, length_penalty, repetition_penalty, no_repeat_ngram_size, ], outputs=[output_text, summary_text, summary_scores, text_file], ) aggregate_button.click( fn=aggregate_text, inputs=[summary_text, text_file], outputs=[aggregated_summary], ) demo.launch(enable_queue=True, share=True)