Spaces:
Runtime error
Runtime error
File size: 4,284 Bytes
ae80214 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import numpy as np
import onnxruntime as ort
def convert_pad_shape(pad_shape):
layer = pad_shape[::-1]
pad_shape = [item for sublist in layer for item in sublist]
return pad_shape
def sequence_mask(length, max_length=None):
if max_length is None:
max_length = length.max()
x = np.arange(max_length, dtype=length.dtype)
return np.expand_dims(x, 0) < np.expand_dims(length, 1)
def generate_path(duration, mask):
"""
duration: [b, 1, t_x]
mask: [b, 1, t_y, t_x]
"""
b, _, t_y, t_x = mask.shape
cum_duration = np.cumsum(duration, -1)
cum_duration_flat = cum_duration.reshape(b * t_x)
path = sequence_mask(cum_duration_flat, t_y)
path = path.reshape(b, t_x, t_y)
path = path ^ np.pad(path, ((0, 0), (1, 0), (0, 0)))[:, :-1]
path = np.expand_dims(path, 1).transpose(0, 1, 3, 2)
return path
class OnnxInferenceSession:
def __init__(self, path, Providers=["CPUExecutionProvider"]):
self.enc = ort.InferenceSession(path["enc"], providers=Providers)
self.emb_g = ort.InferenceSession(path["emb_g"], providers=Providers)
self.dp = ort.InferenceSession(path["dp"], providers=Providers)
self.sdp = ort.InferenceSession(path["sdp"], providers=Providers)
self.flow = ort.InferenceSession(path["flow"], providers=Providers)
self.dec = ort.InferenceSession(path["dec"], providers=Providers)
def __call__(
self,
seq,
tone,
language,
bert_zh,
bert_jp,
bert_en,
vqidx,
sid,
seed=114514,
seq_noise_scale=0.8,
sdp_noise_scale=0.6,
length_scale=1.0,
sdp_ratio=0.0,
):
if seq.ndim == 1:
seq = np.expand_dims(seq, 0)
if tone.ndim == 1:
tone = np.expand_dims(tone, 0)
if language.ndim == 1:
language = np.expand_dims(language, 0)
assert(seq.ndim == 2,tone.ndim == 2,language.ndim == 2)
g = self.emb_g.run(
None,
{
"sid": sid.astype(np.int64),
},
)[0]
g = np.expand_dims(g, -1)
enc_rtn = self.enc.run(
None,
{
"x": seq.astype(np.int64),
"t": tone.astype(np.int64),
"language": language.astype(np.int64),
"bert_0": bert_zh.astype(np.float32),
"bert_1": bert_jp.astype(np.float32),
"bert_2": bert_en.astype(np.float32),
"g": g.astype(np.float32),
"vqidx": vqidx.astype(np.int64),
"sid": sid.astype(np.int64)
},
)
x, m_p, logs_p, x_mask = enc_rtn[0], enc_rtn[1], enc_rtn[2], enc_rtn[3]
np.random.seed(seed)
zinput = np.random.randn(x.shape[0], 2, x.shape[2]) * sdp_noise_scale
logw = self.sdp.run(
None, {"x": x, "x_mask": x_mask, "zin": zinput.astype(np.float32), "g": g}
)[0] * (sdp_ratio) + self.dp.run(None, {"x": x, "x_mask": x_mask, "g": g})[
0
] * (
1 - sdp_ratio
)
w = np.exp(logw) * x_mask * length_scale
w_ceil = np.ceil(w)
y_lengths = np.clip(np.sum(w_ceil, (1, 2)), a_min=1.0, a_max=100000).astype(
np.int64
)
y_mask = np.expand_dims(sequence_mask(y_lengths, None), 1)
attn_mask = np.expand_dims(x_mask, 2) * np.expand_dims(y_mask, -1)
attn = generate_path(w_ceil, attn_mask)
m_p = np.matmul(attn.squeeze(1), m_p.transpose(0, 2, 1)).transpose(
0, 2, 1
) # [b, t', t], [b, t, d] -> [b, d, t']
logs_p = np.matmul(attn.squeeze(1), logs_p.transpose(0, 2, 1)).transpose(
0, 2, 1
) # [b, t', t], [b, t, d] -> [b, d, t']
z_p = (
m_p
+ np.random.randn(m_p.shape[0], m_p.shape[1], m_p.shape[2])
* np.exp(logs_p)
* seq_noise_scale
)
z = self.flow.run(
None,
{
"z_p": z_p.astype(np.float32),
"y_mask": y_mask.astype(np.float32),
"g": g,
},
)[0]
return self.dec.run(None, {"z_in": z.astype(np.float32), "g": g})[0]
|