Spaces:
Sleeping
Sleeping
File size: 12,851 Bytes
1cf1e13 ae80214 1cf1e13 af3a9fd ae80214 1cf1e13 ae80214 1cf1e13 ae80214 1cf1e13 af3a9fd ae80214 1cf1e13 af3a9fd ae80214 1cf1e13 ae80214 1cf1e13 ae80214 1cf1e13 ae80214 1cf1e13 ae80214 1cf1e13 ae80214 1cf1e13 ae80214 1cf1e13 ae80214 1cf1e13 aafbd4e 1cf1e13 ae80214 1cf1e13 ae80214 1cf1e13 ae80214 1cf1e13 ae80214 1cf1e13 ae80214 1cf1e13 ae80214 1cf1e13 ae80214 1cf1e13 ae80214 1cf1e13 ae80214 1cf1e13 ae80214 1cf1e13 ae80214 1cf1e13 ae80214 1cf1e13 ae80214 1cf1e13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
"""
版本管理、兼容推理及模型加载实现。
版本说明:
1. 版本号与github的release版本号对应,使用哪个release版本训练的模型即对应其版本号
2. 请在模型的config.json中显示声明版本号,添加一个字段"version" : "你的版本号"
特殊版本说明:
1.1.1-fix: 1.1.1版本训练的模型,但是在推理时使用dev的日语修复
2.2:当前版本
"""
import torch
import commons
from text import cleaned_text_to_sequence, get_bert
# from clap_wrapper import get_clap_audio_feature, get_clap_text_feature
from text.cleaner import clean_text
import utils
import numpy as np
from models import SynthesizerTrn
from text.symbols import symbols
# from oldVersion.V210.models import SynthesizerTrn as V210SynthesizerTrn
# from oldVersion.V210.text import symbols as V210symbols
# from oldVersion.V200.models import SynthesizerTrn as V200SynthesizerTrn
# from oldVersion.V200.text import symbols as V200symbols
# from oldVersion.V111.models import SynthesizerTrn as V111SynthesizerTrn
# from oldVersion.V111.text import symbols as V111symbols
# from oldVersion.V110.models import SynthesizerTrn as V110SynthesizerTrn
# from oldVersion.V110.text import symbols as V110symbols
# from oldVersion.V101.models import SynthesizerTrn as V101SynthesizerTrn
# from oldVersion.V101.text import symbols as V101symbols
# from oldVersion import V111, V110, V101, V200, V210
# 当前版本信息
latest_version = "2.3"
# 版本兼容
SynthesizerTrnMap = {
# "2.1": V210SynthesizerTrn,
# "2.0.2-fix": V200SynthesizerTrn,
# "2.0.1": V200SynthesizerTrn,
# "2.0": V200SynthesizerTrn,
# "1.1.1-fix": V111SynthesizerTrn,
# "1.1.1": V111SynthesizerTrn,
# "1.1": V110SynthesizerTrn,
# "1.1.0": V110SynthesizerTrn,
# "1.0.1": V101SynthesizerTrn,
# "1.0": V101SynthesizerTrn,
# "1.0.0": V101SynthesizerTrn,
}
symbolsMap = {
# "2.1": V210symbols,
# "2.0.2-fix": V200symbols,
# "2.0.1": V200symbols,
# "2.0": V200symbols,
# "1.1.1-fix": V111symbols,
# "1.1.1": V111symbols,
# "1.1": V110symbols,
# "1.1.0": V110symbols,
# "1.0.1": V101symbols,
# "1.0": V101symbols,
# "1.0.0": V101symbols,
}
# def get_emo_(reference_audio, emotion, sid):
# emo = (
# torch.from_numpy(get_emo(reference_audio))
# if reference_audio and emotion == -1
# else torch.FloatTensor(
# np.load(f"emo_clustering/{sid}/cluster_center_{emotion}.npy")
# )
# )
# return emo
def get_net_g(model_path: str, version: str, device: str, hps):
if version != latest_version:
net_g = SynthesizerTrnMap[version](
len(symbolsMap[version]),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
).to(device)
else:
# 当前版本模型 net_g
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
).to(device)
_ = net_g.eval()
_ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True)
return net_g
def get_text(text, language_str, hps, device, style_text=None, style_weight=0.7):
style_text = None if style_text == "" else style_text
# 在此处实现当前版本的get_text
norm_text, phone, tone, word2ph = clean_text(text, language_str)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert_ori = get_bert(
norm_text, word2ph, language_str, device, style_text, style_weight
)
del word2ph
assert bert_ori.shape[-1] == len(phone), phone
if language_str == "ZH":
bert = bert_ori
ja_bert = torch.randn(1024, len(phone))
en_bert = torch.randn(1024, len(phone))
elif language_str == "JP":
bert = torch.randn(1024, len(phone))
ja_bert = bert_ori
en_bert = torch.randn(1024, len(phone))
elif language_str == "EN":
bert = torch.randn(1024, len(phone))
ja_bert = torch.randn(1024, len(phone))
en_bert = bert_ori
else:
raise ValueError("language_str should be ZH, JP or EN")
assert bert.shape[-1] == len(
phone
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)
return bert, ja_bert, en_bert, phone, tone, language
def infer(
text,
emotion,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
sid,
language,
hps,
net_g,
device,
reference_audio=None,
skip_start=False,
skip_end=False,
style_text=None,
style_weight=0.7,
):
# 2.2版本参数位置变了
# 2.1 参数新增 emotion reference_audio skip_start skip_end
# inferMap_V3 = {
# "2.1": V210.infer,
#}
# 支持中日英三语版本
inferMap_V2 = {
# "2.0.2-fix": V200.infer,
# "2.0.1": V200.infer,
# "2.0": V200.infer,
# "1.1.1-fix": V111.infer_fix,
# "1.1.1": V111.infer,
# "1.1": V110.infer,
# "1.1.0": V110.infer,
}
# 仅支持中文版本
# 在测试中,并未发现两个版本的模型不能互相通用
inferMap_V1 = {
# "1.0.1": V101.infer,
# "1.0": V101.infer,
# "1.0.0": V101.infer,
}
version = hps.version if hasattr(hps, "version") else latest_version
# 非当前版本,根据版本号选择合适的infer
if version != latest_version:
if version in inferMap_V3.keys():
emotion = 0
return inferMap_V3[version](
text,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
sid,
language,
hps,
net_g,
device,
reference_audio,
emotion,
skip_start,
skip_end,
style_text,
style_weight,
)
if version in inferMap_V2.keys():
return inferMap_V2[version](
text,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
sid,
language,
hps,
net_g,
device,
)
if version in inferMap_V1.keys():
return inferMap_V1[version](
text,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
sid,
hps,
net_g,
device,
)
# 在此处实现当前版本的推理
# emo = get_emo_(reference_audio, emotion, sid)
# if isinstance(reference_audio, np.ndarray):
# emo = get_clap_audio_feature(reference_audio, device)
# else:
# emo = get_clap_text_feature(emotion, device)
# emo = torch.squeeze(emo, dim=1)
bert, ja_bert, en_bert, phones, tones, lang_ids = get_text(
text,
language,
hps,
device,
style_text=style_text,
style_weight=style_weight,
)
if skip_start:
phones = phones[3:]
tones = tones[3:]
lang_ids = lang_ids[3:]
bert = bert[:, 3:]
ja_bert = ja_bert[:, 3:]
en_bert = en_bert[:, 3:]
if skip_end:
phones = phones[:-2]
tones = tones[:-2]
lang_ids = lang_ids[:-2]
bert = bert[:, :-2]
ja_bert = ja_bert[:, :-2]
en_bert = en_bert[:, :-2]
with torch.no_grad():
x_tst = phones.to(device).unsqueeze(0)
tones = tones.to(device).unsqueeze(0)
lang_ids = lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
ja_bert = ja_bert.to(device).unsqueeze(0)
en_bert = en_bert.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
# emo = emo.to(device).unsqueeze(0)
del phones
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
audio = (
net_g.infer(
x_tst,
x_tst_lengths,
speakers,
tones,
lang_ids,
bert,
ja_bert,
en_bert,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)[0][0, 0]
.data.cpu()
.float()
.numpy()
)
del (
x_tst,
tones,
lang_ids,
bert,
x_tst_lengths,
speakers,
ja_bert,
en_bert,
) # , emo
if torch.cuda.is_available():
torch.cuda.empty_cache()
return audio
def infer_multilang(
text,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
sid,
language,
hps,
net_g,
device,
reference_audio=None,
emotion=None,
skip_start=False,
skip_end=False,
):
bert, ja_bert, en_bert, phones, tones, lang_ids = [], [], [], [], [], []
# emo = get_emo_(reference_audio, emotion, sid)
# if isinstance(reference_audio, np.ndarray):
# emo = get_clap_audio_feature(reference_audio, device)
# else:
# emo = get_clap_text_feature(emotion, device)
# emo = torch.squeeze(emo, dim=1)
for idx, (txt, lang) in enumerate(zip(text, language)):
_skip_start = (idx != 0) or (skip_start and idx == 0)
_skip_end = (idx != len(language) - 1) or skip_end
(
temp_bert,
temp_ja_bert,
temp_en_bert,
temp_phones,
temp_tones,
temp_lang_ids,
) = get_text(txt, lang, hps, device)
if _skip_start:
temp_bert = temp_bert[:, 3:]
temp_ja_bert = temp_ja_bert[:, 3:]
temp_en_bert = temp_en_bert[:, 3:]
temp_phones = temp_phones[3:]
temp_tones = temp_tones[3:]
temp_lang_ids = temp_lang_ids[3:]
if _skip_end:
temp_bert = temp_bert[:, :-2]
temp_ja_bert = temp_ja_bert[:, :-2]
temp_en_bert = temp_en_bert[:, :-2]
temp_phones = temp_phones[:-2]
temp_tones = temp_tones[:-2]
temp_lang_ids = temp_lang_ids[:-2]
bert.append(temp_bert)
ja_bert.append(temp_ja_bert)
en_bert.append(temp_en_bert)
phones.append(temp_phones)
tones.append(temp_tones)
lang_ids.append(temp_lang_ids)
bert = torch.concatenate(bert, dim=1)
ja_bert = torch.concatenate(ja_bert, dim=1)
en_bert = torch.concatenate(en_bert, dim=1)
phones = torch.concatenate(phones, dim=0)
tones = torch.concatenate(tones, dim=0)
lang_ids = torch.concatenate(lang_ids, dim=0)
with torch.no_grad():
x_tst = phones.to(device).unsqueeze(0)
tones = tones.to(device).unsqueeze(0)
lang_ids = lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
ja_bert = ja_bert.to(device).unsqueeze(0)
en_bert = en_bert.to(device).unsqueeze(0)
# emo = emo.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
del phones
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
audio = (
net_g.infer(
x_tst,
x_tst_lengths,
speakers,
tones,
lang_ids,
bert,
ja_bert,
en_bert,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)[0][0, 0]
.data.cpu()
.float()
.numpy()
)
del (
x_tst,
tones,
lang_ids,
bert,
x_tst_lengths,
speakers,
ja_bert,
en_bert,
) # , emo
if torch.cuda.is_available():
torch.cuda.empty_cache()
return audio
|