Spaces:
Running
Running
import random | |
import PIL | |
import numpy as np | |
class MIDITokenizer: | |
def __init__(self): | |
self.vocab_size = 0 | |
def allocate_ids(size): | |
ids = [self.vocab_size + i for i in range(size)] | |
self.vocab_size += size | |
return ids | |
self.pad_id = allocate_ids(1)[0] | |
self.bos_id = allocate_ids(1)[0] | |
self.eos_id = allocate_ids(1)[0] | |
self.events = { | |
"note": ["time1", "time2", "track", "duration", "channel", "pitch", "velocity"], | |
"patch_change": ["time1", "time2", "track", "channel", "patch"], | |
"control_change": ["time1", "time2", "track", "channel", "controller", "value"], | |
"set_tempo": ["time1", "time2", "track", "bpm"], | |
} | |
self.event_parameters = { | |
"time1": 128, "time2": 16, "duration": 2048, "track": 128, "channel": 16, "pitch": 128, "velocity": 128, | |
"patch": 128, "controller": 128, "value": 128, "bpm": 256 | |
} | |
self.event_ids = {e: allocate_ids(1)[0] for e in self.events.keys()} | |
self.id_events = {i: e for e, i in self.event_ids.items()} | |
self.parameter_ids = {p: allocate_ids(s) for p, s in self.event_parameters.items()} | |
self.max_token_seq = max([len(ps) for ps in self.events.values()]) + 1 | |
def tempo2bpm(self, tempo): | |
tempo = tempo / 10 ** 6 # us to s | |
bpm = 60 / tempo | |
return bpm | |
def bpm2tempo(self, bpm): | |
if bpm == 0: | |
bpm = 1 | |
tempo = int((60 / bpm) * 10 ** 6) | |
return tempo | |
def tokenize(self, midi_score, add_bos_eos=True): | |
ticks_per_beat = midi_score[0] | |
event_list = {} | |
for track_idx, track in enumerate(midi_score[1:129]): | |
last_notes = {} | |
for event in track: | |
t = round(16 * event[1] / ticks_per_beat) # quantization | |
new_event = [event[0], t // 16, t % 16, track_idx] + event[2:] | |
if event[0] == "note": | |
new_event[4] = max(1, round(16 * new_event[4] / ticks_per_beat)) | |
elif event[0] == "set_tempo": | |
new_event[4] = int(self.tempo2bpm(new_event[4])) | |
if event[0] == "note": | |
key = tuple(new_event[:4] + new_event[5:-1]) | |
else: | |
key = tuple(new_event[:-1]) | |
if event[0] == "note": # to eliminate note overlap due to quantization | |
cp = tuple(new_event[5:7]) | |
if cp in last_notes: | |
last_note_key, last_note = last_notes[cp] | |
last_t = last_note[1] * 16 + last_note[2] | |
last_note[4] = max(0, min(last_note[4], t - last_t)) | |
if last_note[4] == 0: | |
event_list.pop(last_note_key) | |
last_notes[cp] = (key, new_event) | |
event_list[key] = new_event | |
event_list = list(event_list.values()) | |
event_list = sorted(event_list, key=lambda e: e[1:4]) | |
midi_seq = [] | |
last_t1 = 0 | |
for event in event_list: | |
name = event[0] | |
if name in self.event_ids: | |
params = event[1:] | |
cur_t1 = params[0] | |
params[0] = params[0] - last_t1 | |
if not all([0 <= params[i] < self.event_parameters[p] for i, p in enumerate(self.events[name])]): | |
continue | |
tokens = [self.event_ids[name]] + [self.parameter_ids[p][params[i]] | |
for i, p in enumerate(self.events[name])] | |
tokens += [self.pad_id] * (self.max_token_seq - len(tokens)) | |
midi_seq.append(tokens) | |
last_t1 = cur_t1 | |
if add_bos_eos: | |
bos = [self.bos_id] + [self.pad_id] * (self.max_token_seq - 1) | |
eos = [self.eos_id] + [self.pad_id] * (self.max_token_seq - 1) | |
midi_seq = [bos] + midi_seq + [eos] | |
return midi_seq | |
def event2tokens(self, event): | |
name = event[0] | |
params = event[1:] | |
tokens = [self.event_ids[name]] + [self.parameter_ids[p][params[i]] | |
for i, p in enumerate(self.events[name])] | |
tokens += [self.pad_id] * (self.max_token_seq - len(tokens)) | |
return tokens | |
def detokenize(self, midi_seq): | |
ticks_per_beat = 480 | |
tracks_dict = {} | |
t1 = 0 | |
for tokens in midi_seq: | |
if tokens[0] in self.id_events: | |
name = self.id_events[tokens[0]] | |
if len(tokens) <= len(self.events[name]): | |
continue | |
params = tokens[1:] | |
params = [params[i] - self.parameter_ids[p][0] for i, p in enumerate(self.events[name])] | |
if not all([0 <= params[i] < self.event_parameters[p] for i, p in enumerate(self.events[name])]): | |
continue | |
event = [name] + params | |
if name == "set_tempo": | |
event[4] = self.bpm2tempo(event[4]) | |
if event[0] == "note": | |
event[4] = int(event[4] * ticks_per_beat / 16) | |
t1 += event[1] | |
t = t1 * 16 + event[2] | |
t = int(t * ticks_per_beat / 16) | |
track_idx = event[3] | |
if track_idx not in tracks_dict: | |
tracks_dict[track_idx] = [] | |
tracks_dict[track_idx].append([event[0], t] + event[4:]) | |
tracks = list(tracks_dict.values()) | |
for i in range(len(tracks)): # to eliminate note overlap | |
track = tracks[i] | |
track = sorted(track, key=lambda e: e[1]) | |
last_note_t = {} | |
zero_len_notes = [] | |
for e in reversed(track): | |
if e[0] == "note": | |
t, d, c, p = e[1:5] | |
key = (c, p) | |
if key in last_note_t: | |
d = min(d, max(last_note_t[key] - t, 0)) | |
last_note_t[key] = t | |
e[2] = d | |
if d == 0: | |
zero_len_notes.append(e) | |
for e in zero_len_notes: | |
track.remove(e) | |
tracks[i] = track | |
return [ticks_per_beat, *tracks] | |
def midi2img(self, midi_score): | |
ticks_per_beat = midi_score[0] | |
notes = [] | |
max_time = 1 | |
track_num = len(midi_score[1:]) | |
for track_idx, track in enumerate(midi_score[1:]): | |
for event in track: | |
t = round(16 * event[1] / ticks_per_beat) | |
if event[0] == "note": | |
d = max(1, round(16 * event[2] / ticks_per_beat)) | |
c, p = event[3:5] | |
max_time = max(max_time, t + d + 1) | |
notes.append((track_idx, c, p, t, d)) | |
img = np.zeros((128, max_time, 3), dtype=np.uint8) | |
colors = {(i, j): np.random.randint(50, 256, 3) for i in range(track_num) for j in range(16)} | |
for note in notes: | |
tr, c, p, t, d = note | |
img[p, t: t + d] = colors[(tr, c)] | |
img = PIL.Image.fromarray(np.flip(img, 0)) | |
return img | |
def augment(self, midi_seq, max_pitch_shift=4, max_vel_shift=10, max_cc_val_shift=10, max_bpm_shift=10, | |
max_track_shift=128, max_channel_shift=16): | |
pitch_shift = random.randint(-max_pitch_shift, max_pitch_shift) | |
vel_shift = random.randint(-max_vel_shift, max_vel_shift) | |
cc_val_shift = random.randint(-max_cc_val_shift, max_cc_val_shift) | |
bpm_shift = random.randint(-max_bpm_shift, max_bpm_shift) | |
track_shift = random.randint(0, max_track_shift) | |
channel_shift = random.randint(0, max_channel_shift) | |
midi_seq_new = [] | |
for tokens in midi_seq: | |
tokens_new = [*tokens] | |
if tokens[0] in self.id_events: | |
name = self.id_events[tokens[0]] | |
for i, pn in enumerate(self.events[name]): | |
if pn == "track": | |
tr = tokens[1 + i] - self.parameter_ids[pn][0] | |
tr += track_shift | |
tr = tr % self.event_parameters[pn] | |
tokens_new[1 + i] = self.parameter_ids[pn][tr] | |
elif pn == "channel": | |
c = tokens[1 + i] - self.parameter_ids[pn][0] | |
c0 = c | |
c += channel_shift | |
c = c % self.event_parameters[pn] | |
if c0 == 9: | |
c = 9 | |
elif c == 9: | |
c = (9 + channel_shift) % self.event_parameters[pn] | |
tokens_new[1 + i] = self.parameter_ids[pn][c] | |
if name == "note": | |
c = tokens[5] - self.parameter_ids["channel"][0] | |
p = tokens[6] - self.parameter_ids["pitch"][0] | |
v = tokens[7] - self.parameter_ids["velocity"][0] | |
if c != 9: # no shift for drums | |
p += pitch_shift | |
if not 0 <= p < 128: | |
return midi_seq | |
v += vel_shift | |
v = max(1, min(127, v)) | |
tokens_new[6] = self.parameter_ids["pitch"][p] | |
tokens_new[7] = self.parameter_ids["velocity"][v] | |
elif name == "control_change": | |
cc = tokens[5] - self.parameter_ids["controller"][0] | |
val = tokens[6] - self.parameter_ids["value"][0] | |
if cc in [1, 2, 7, 11]: | |
val += cc_val_shift | |
val = max(1, min(127, val)) | |
tokens_new[6] = self.parameter_ids["value"][val] | |
elif name == "set_tempo": | |
bpm = tokens[4] - self.parameter_ids["bpm"][0] | |
bpm += bpm_shift | |
bpm = max(1, min(255, bpm)) | |
tokens_new[4] = self.parameter_ids["bpm"][bpm] | |
midi_seq_new.append(tokens_new) | |
return midi_seq_new | |
def check_alignment(self, midi_seq, threshold=0.3): | |
total = 0 | |
hist = [0] * 16 | |
for tokens in midi_seq: | |
if tokens[0] in self.id_events and self.id_events[tokens[0]] == "note": | |
t2 = tokens[2] - self.parameter_ids["time2"][0] | |
total += 1 | |
hist[t2] += 1 | |
if total == 0: | |
return False | |
hist = sorted(hist, reverse=True) | |
p = sum(hist[:2]) / total | |
return p > threshold | |