import argparse import glob import os.path import PIL import PIL.ImageColor import gradio as gr import numpy as np import onnxruntime as rt import tqdm from huggingface_hub import hf_hub_download import MIDI from midi_synthesizer import synthesis from midi_tokenizer import MIDITokenizer in_space = os.getenv("SYSTEM") == "spaces" def softmax(x, axis): x_max = np.amax(x, axis=axis, keepdims=True) exp_x_shifted = np.exp(x - x_max) return exp_x_shifted / np.sum(exp_x_shifted, axis=axis, keepdims=True) def sample_top_p_k(probs, p, k): probs_idx = np.argsort(-probs, axis=-1) probs_sort = np.take_along_axis(probs, probs_idx, -1) probs_sum = np.cumsum(probs_sort, axis=-1) mask = probs_sum - probs_sort > p probs_sort[mask] = 0.0 mask = np.zeros(probs_sort.shape[-1]) mask[:k] = 1 probs_sort = probs_sort * mask probs_sort /= np.sum(probs_sort, axis=-1, keepdims=True) shape = probs_sort.shape probs_sort_flat = probs_sort.reshape(-1, shape[-1]) probs_idx_flat = probs_idx.reshape(-1, shape[-1]) next_token = np.stack([np.random.choice(idxs, p=pvals) for pvals, idxs in zip(probs_sort_flat, probs_idx_flat)]) next_token = next_token.reshape(*shape[:-1]) return next_token def generate(model, prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20, disable_patch_change=False, disable_control_change=False, disable_channels=None): if disable_channels is not None: disable_channels = [tokenizer.parameter_ids["channel"][c] for c in disable_channels] else: disable_channels = [] max_token_seq = tokenizer.max_token_seq if prompt is None: input_tensor = np.full((1, max_token_seq), tokenizer.pad_id, dtype=np.int64) input_tensor[0, 0] = tokenizer.bos_id # bos else: prompt = prompt[:, :max_token_seq] if prompt.shape[-1] < max_token_seq: prompt = np.pad(prompt, ((0, 0), (0, max_token_seq - prompt.shape[-1])), mode="constant", constant_values=tokenizer.pad_id) input_tensor = prompt input_tensor = input_tensor[None, :, :] cur_len = input_tensor.shape[1] bar = tqdm.tqdm(desc="generating", total=max_len - cur_len, disable=in_space) with bar: while cur_len < max_len: end = False hidden = model[0].run(None, {'x': input_tensor})[0][:, -1] next_token_seq = np.empty((1, 0), dtype=np.int64) event_name = "" for i in range(max_token_seq): mask = np.zeros(tokenizer.vocab_size, dtype=np.int64) if i == 0: mask_ids = list(tokenizer.event_ids.values()) + [tokenizer.eos_id] if disable_patch_change: mask_ids.remove(tokenizer.event_ids["patch_change"]) if disable_control_change: mask_ids.remove(tokenizer.event_ids["control_change"]) mask[mask_ids] = 1 else: param_name = tokenizer.events[event_name][i - 1] mask_ids = tokenizer.parameter_ids[param_name] if param_name == "channel": mask_ids = [i for i in mask_ids if i not in disable_channels] mask[mask_ids] = 1 logits = model[1].run(None, {'x': next_token_seq, "hidden": hidden})[0][:, -1:] scores = softmax(logits / temp, -1) * mask sample = sample_top_p_k(scores, top_p, top_k) if i == 0: next_token_seq = sample eid = sample.item() if eid == tokenizer.eos_id: end = True break event_name = tokenizer.id_events[eid] else: next_token_seq = np.concatenate([next_token_seq, sample], axis=1) if len(tokenizer.events[event_name]) == i: break if next_token_seq.shape[1] < max_token_seq: next_token_seq = np.pad(next_token_seq, ((0, 0), (0, max_token_seq - next_token_seq.shape[-1])), mode="constant", constant_values=tokenizer.pad_id) next_token_seq = next_token_seq[None, :, :] input_tensor = np.concatenate([input_tensor, next_token_seq], axis=1) cur_len += 1 bar.update(1) yield next_token_seq.reshape(-1) if end: break def run(model_name, tab, instruments, drum_kit, mid, midi_events, gen_events, temp, top_p, top_k, allow_cc): mid_seq = [] max_len = int(gen_events) img_len = 1024 img = np.full((128 * 2, img_len, 3), 255, dtype=np.uint8) state = {"t1": 0, "t": 0, "cur_pos": 0} colors = ['navy', 'blue', 'deepskyblue', 'teal', 'green', 'lightgreen', 'lime', 'orange', 'brown', 'grey', 'red', 'pink', 'aqua', 'orchid', 'bisque', 'coral'] colors = [PIL.ImageColor.getrgb(color) for color in colors] def draw_event(tokens): if tokens[0] in tokenizer.id_events: name = tokenizer.id_events[tokens[0]] if len(tokens) <= len(tokenizer.events[name]): return params = tokens[1:] params = [params[i] - tokenizer.parameter_ids[p][0] for i, p in enumerate(tokenizer.events[name])] if not all([0 <= params[i] < tokenizer.event_parameters[p] for i, p in enumerate(tokenizer.events[name])]): return event = [name] + params state["t1"] += event[1] t = state["t1"] * 16 + event[2] state["t"] = t if name == "note": tr, d, c, p = event[3:7] shift = t + d - (state["cur_pos"] + img_len) if shift > 0: img[:, :-shift] = img[:, shift:] img[:, -shift:] = 255 state["cur_pos"] += shift t = t - state["cur_pos"] img[p * 2:(p + 1) * 2, t: t + d] = colors[c] def get_img(): t = state["t"] - state["cur_pos"] img_new = img.copy() img_new[:, t: t + 2] = 0 return PIL.Image.fromarray(np.flip(img_new, 0)) disable_patch_change = False disable_channels = None if tab == 0: i = 0 mid = [[tokenizer.bos_id] + [tokenizer.pad_id] * (tokenizer.max_token_seq - 1)] patches = {} for instr in instruments: patches[i] = patch2number[instr] i = (i + 1) if i != 8 else 10 if drum_kit != "None": patches[9] = drum_kits2number[drum_kit] for i, (c, p) in enumerate(patches.items()): mid.append(tokenizer.event2tokens(["patch_change", 0, 0, i, c, p])) mid_seq = mid mid = np.asarray(mid, dtype=np.int64) if len(instruments) > 0: disable_patch_change = True disable_channels = [i for i in range(16) if i not in patches] elif mid is not None: mid = tokenizer.tokenize(MIDI.midi2score(mid)) mid = np.asarray(mid, dtype=np.int64) mid = mid[:int(midi_events)] max_len += len(mid) for token_seq in mid: mid_seq.append(token_seq) draw_event(token_seq) model = models[model_name] generator = generate(model, mid, max_len=max_len, temp=temp, top_p=top_p, top_k=top_k, disable_patch_change=disable_patch_change, disable_control_change=not allow_cc, disable_channels=disable_channels) for token_seq in generator: mid_seq.append(token_seq) draw_event(token_seq) yield mid_seq, get_img(), None, None mid = tokenizer.detokenize(mid_seq) with open(f"output.mid", 'wb') as f: f.write(MIDI.score2midi(mid)) audio = synthesis(MIDI.score2opus(mid), soundfont_path) yield mid_seq, get_img(), "output.mid", (44100, audio) def cancel_run(mid_seq): if mid_seq is None: return None, None mid = tokenizer.detokenize(mid_seq) with open(f"output.mid", 'wb') as f: f.write(MIDI.score2midi(mid)) audio = synthesis(MIDI.score2opus(mid), soundfont_path) return "output.mid", (44100, audio) number2drum_kits = {-1: "None", 0: "Standard", 8: "Room", 16: "Power", 24: "Electric", 25: "TR-808", 32: "Jazz", 40: "Blush", 48: "Orchestra"} patch2number = {v: k for k, v in MIDI.Number2patch.items()} drum_kits2number = {v: k for k, v in number2drum_kits.items()} if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--share", action="store_true", default=False, help="share gradio app") parser.add_argument("--port", type=int, default=7860, help="gradio server port") parser.add_argument("--max-gen", type=int, default=1024, help="max") opt = parser.parse_args() soundfont_path = hf_hub_download(repo_id="skytnt/midi-model", filename="soundfont.sf2") models_info = {"generic pretrain model": ["skytnt/midi-model", ""], "symphony finetune model": ["skytnt/midi-model-ft", "symphony/"], "j-pop finetune model": ["skytnt/midi-model-ft", "jpop/"] "touhou finetune model": ["skytnt/midi-model-ft", "touhou/"]} models = {} tokenizer = MIDITokenizer() providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] for name, (repo_id, path) in models_info.items(): model_base_path = hf_hub_download(repo_id=repo_id, filename=f"{path}onnx/model_base.onnx") model_token_path = hf_hub_download(repo_id=repo_id, filename=f"{path}onnx/model_token.onnx") model_base = rt.InferenceSession(model_base_path, providers=providers) model_token = rt.InferenceSession(model_token_path, providers=providers) models[name] = [model_base, model_token] app = gr.Blocks() with app: gr.Markdown("