EndpointTesting / app.py
Mikhil-jivus's picture
Update app.py
b440713 verified
raw
history blame
5.18 kB
import os
from threading import Thread
import bitsandbytes
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
# Set the environment variable
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
DESCRIPTION = """\
# Llama 3.2 3B Instruct
Llama 3.2 3B is Meta's latest iteration of open LLMs.
This is a demo of [`meta-llama/Llama-3.2-3B-Instruct`](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct), fine-tuned for instruction following.
For more details, please check [our post](https://huggingface.co/blog/llama32).
"""
# Access token for the model (if required)
access_token = os.getenv('HF_TOKEN')
# Download the Base model
#model_id = "./models/Llama-32-3B-Instruct"
model_id = "nvidia/Llama-3_1-Nemotron-51B-Instruct"
MAX_MAX_NEW_TOKENS = 6144
DEFAULT_MAX_NEW_TOKENS = 6144
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "6144"))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#model_id = "nltpt/Llama-3.2-3B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id,token=access_token)
#tokenizer.padding_side = 'right'
#tokenizer.eos_token_id = 107
#tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map=device,
trust_remote_code=True,
#torch_dtype=torch.float8,
load_in_8bit=True,
token=access_token
)
model.eval()
@spaces.GPU(duration=90)
def generate(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = [{"role": "system", "content": system_prompt}]
for user, assistant in chat_history:
conversation.extend(
[
{"role": "user", "content": user},
{"role": "assistant", "content": assistant},
]
)
conversation.append({"role": "user", "content": message})
# Set pad_token_id if it's not already set
if tokenizer.pad_token_id is None:
tokenizer.padding_side = 'right'
tokenizer.pad_token = tokenizer.eos_token
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True,add_special_tokens=True, return_tensors="pt",padding=True ,return_attention_mask=True)
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
# Ensure attention mask is set
#attention_mask = input_ids['attention_mask']
input_ids = input_ids.to(model.device)
#attention_mask = attention_mask.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=2000.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Textbox(
label="System Prompt",
placeholder="Enter system prompt here...",
lines=2,
),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
["Hello there! How are you doing?"],
["Can you explain briefly to me what is the Python programming language?"],
["Explain the plot of Cinderella in a sentence."],
["How many hours does it take a man to eat a Helicopter?"],
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
],
cache_examples=False,
)
with gr.Blocks(css="style.css", fill_height=True) as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=20).launch()