#!/usr/bin/env python from __future__ import annotations import gradio as gr import PIL.Image import zipfile from genTag import genTag from cropImage import cropImage from checkIgnore import is_ignore from createTagDom import create_tag_dom def predict(image: PIL.Image.Image, score_threshold: float): result_threshold = genTag(image, score_threshold) result_html = '' for label, prob in result_threshold.items(): result_html += create_tag_dom(label, is_ignore(label, 1), prob) result_html = '
' + result_html + '
' result_filter = {key: value for key, value in result_threshold.items() if not is_ignore(key, 1)} result_text = '
' + ', '.join(result_filter.keys()) + '
' crop_image = cropImage(image) return result_html, result_text, crop_image def predict_batch(zip_file, score_threshold: float, progress=gr.Progress()): result = '' with zipfile.ZipFile(zip_file) as zf: for file in progress.tqdm(zf.namelist()): print(file) if file.endswith(".png") or file.endswith(".jpg"): image_file = zf.open(file) image = PIL.Image.open(image_file) image = image.convert("RGB") result_threshold = genTag(image, score_threshold) result_filter = {key: value for key, value in result_threshold.items() if not is_ignore(key, 2)} tag = ', '.join(result_filter.keys()) result = result + str(file) + '\n' + str(tag) + '\n\n' return result with gr.Blocks(css="style.css", js="script.js") as demo: with gr.Tab(label='Single'): with gr.Row(): with gr.Column(scale=1): image = gr.Image(label='Upload a image', type='pil', elem_classes='m5dd_image', sources=["upload", "clipboard"]) score_threshold = gr.Slider(label='Score threshold', minimum=0, maximum=1, step=0.1, value=0.3) run_button = gr.Button('Run') result_text = gr.HTML(value="") with gr.Accordion("Crop Image"): crop_image = gr.Image(elem_classes='m5dd_image', format='jpg', show_label=False, container=False) with gr.Column(scale=2): result_html = gr.HTML(value="") with gr.Tab(label='Batch'): with gr.Row(): with gr.Column(scale=1): batch_file = gr.File(label="Upload a ZIP file containing images", file_types=['.zip']) score_threshold2 = gr.Slider(label='Score threshold', minimum=0, maximum=1, step=0.1, value=0.3) run_button2 = gr.Button('Run') with gr.Column(scale=2): result_text2 = gr.Textbox(lines=20, max_lines=20, label='Result', show_copy_button=True, autoscroll=False) run_button.click( fn=predict, inputs=[image, score_threshold], outputs=[result_html, result_text, crop_image], api_name='predict', ) run_button2.click( fn=predict_batch, inputs=[batch_file, score_threshold2], outputs=[result_text2], api_name='predict_batch', ) demo.queue().launch()