Spaces:
Sleeping
Sleeping
File size: 7,472 Bytes
e9a044b 47446fb e9a044b d4f0d67 e9a044b d4f0d67 e9a044b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import gradio as gr
import os
import sys
import argparse
import random
from omegaconf import OmegaConf
import torch
import torchvision
from pytorch_lightning import seed_everything
from huggingface_hub import hf_hub_download
sys.path.insert(0, "scripts/evaluation")
from funcs import (
batch_ddim_sampling_freenoise,
load_model_checkpoint,
)
from utils.utils import instantiate_from_config
ckpt_path_1024 = "checkpoints/base_1024_v1/model.ckpt"
config_1024 = "configs/inference_t2v_1024_v1.0_freenoise.yaml"
# hf_hub_download(repo_id="VideoCrafter/Text2Video-1024", filename="model.ckpt", local_dir=ckpt_path_1024)
ckpt_path_256 = "checkpoints/base_256_v1/model.pth"
config_256 = "configs/inference_t2v_tconv256_v1.0_freenoise.yaml"
hf_hub_download(repo_id="MoonQiu/LongerCrafter", filename="model.pth", local_dir=ckpt_path_256)
def infer(prompt):
output_size = "256x256"
num_frames = 32
ddim_steps = 50
unconditional_guidance_scale = 12.0
seed = 123
save_fps = 10
window_size = 16
window_stride = 4
if output_size == "576x1024":
width = 1024
height = 576
config_1024 = OmegaConf.load(config_1024)
model_config_1024 = config_1024.pop("model", OmegaConf.create())
model_1024 = instantiate_from_config(model_config_1024)
# model_1024 = model_1024.cuda()
model_1024 = load_model_checkpoint(model_1024, ckpt_path_1024)
model_1024.eval()
model = model_1024
fps = 24
elif output_size == "256x256":
width = 256
height = 256
config_256 = OmegaConf.load(config_256)
model_config_256 = config_256.pop("model", OmegaConf.create())
model_256 = instantiate_from_config(model_config_256)
# model_256 = model_256.cuda()
model_256 = load_model_checkpoint(model_256, ckpt_path_256)
model_256.eval()
model = model_256
fps = 8
if seed is None:
seed = int.from_bytes(os.urandom(2), "big")
print(f"Using seed: {seed}")
seed_everything(seed)
args = argparse.Namespace(
mode="base",
savefps=save_fps,
n_samples=1,
ddim_steps=ddim_steps,
ddim_eta=0.0,
bs=1,
height=height,
width=width,
frames=num_frames,
fps=fps,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_guidance_scale_temporal=None,
cond_input=None,
window_size=window_size,
window_stride=window_stride,
)
## latent noise shape
h, w = args.height // 8, args.width // 8
frames = model.temporal_length if args.frames < 0 else args.frames
channels = model.channels
x_T_total = torch.randn(
[args.n_samples, 1, channels, frames, h, w], device=model.device
).repeat(1, args.bs, 1, 1, 1, 1)
for frame_index in range(args.window_size, args.frames, args.window_stride):
list_index = list(
range(
frame_index - args.window_size,
frame_index + args.window_stride - args.window_size,
)
)
random.shuffle(list_index)
x_T_total[
:, :, :, frame_index : frame_index + args.window_stride
] = x_T_total[:, :, :, list_index]
batch_size = 1
noise_shape = [batch_size, channels, frames, h, w]
fps = torch.tensor([args.fps] * batch_size).to(model.device).long()
prompts = [prompt]
text_emb = model.get_learned_conditioning(prompts)
cond = {"c_crossattn": [text_emb], "fps": fps}
## inference
batch_samples = batch_ddim_sampling_freenoise(
model,
cond,
noise_shape,
args.n_samples,
args.ddim_steps,
args.ddim_eta,
args.unconditional_guidance_scale,
args=args,
x_T_total=x_T_total,
)
video_path = "/tmp/output.mp4"
vid_tensor = batch_samples[0]
video = vid_tensor.detach().cpu()
video = torch.clamp(video.float(), -1.0, 1.0)
video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w
frame_grids = [
torchvision.utils.make_grid(framesheet, nrow=int(args.n_samples))
for framesheet in video
] # [3, 1*h, n*w]
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w]
grid = (grid + 1.0) / 2.0
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
torchvision.io.write_video(
video_path,
grid,
fps=args.savefps,
video_codec="h264",
options={"crf": "10"},
)
print(video_path)
return video_path, gr.Group.update(visible=True)
css = """
#col-container {max-width: 510px; margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
.animate-spin {
animation: spin 1s linear infinite;
}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {
display: flex;
padding-left: 0.5rem !important;
padding-right: 0.5rem !important;
background-color: #000000;
justify-content: center;
align-items: center;
border-radius: 9999px !important;
max-width: 15rem;
height: 36px;
}
div#share-btn-container > div {
flex-direction: row;
background: black;
align-items: center;
}
#share-btn-container:hover {
background-color: #060606;
}
#share-btn {
all: initial;
color: #ffffff;
font-weight: 600;
cursor:pointer;
font-family: 'IBM Plex Sans', sans-serif;
margin-left: 0.5rem !important;
padding-top: 0.5rem !important;
padding-bottom: 0.5rem !important;
right:0;
}
#share-btn * {
all: unset;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
#share-btn-container.hidden {
display: none!important;
}
img[src*='#center'] {
display: inline-block;
margin: unset;
}
.footer {
margin-bottom: 45px;
margin-top: 10px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
"""
<h1 style="text-align: center;">LongerCrafter(FreeNoise) Text-to-Video</h1>
<p style="text-align: center;">
Tuning-Free Longer Video Diffusion via Noise Rescheduling <br />
</p>
"""
)
prompt_in = gr.Textbox(label="Prompt", placeholder="A chihuahua in astronaut suit floating in space, cinematic lighting, glow effect", elem_id="prompt-in")
#neg_prompt = gr.Textbox(label="Negative prompt", value="text, watermark, copyright, blurry, nsfw", elem_id="neg-prompt-in")
#inference_steps = gr.Slider(label="Inference Steps", minimum=10, maximum=100, step=1, value=40, interactive=False)
submit_btn = gr.Button("Submit")
video_result = gr.Video(label="Video Output", elem_id="video-output")
submit_btn.click(fn=infer,
inputs=[prompt_in],
outputs=[video_result],
api_name="zrscp")
demo.queue(max_size=12).launch(show_api=True) |