Spaces:
Sleeping
Sleeping
File size: 11,707 Bytes
e9a044b 9c4bb92 e9a044b d592ac3 93f8cdd a2ce0ab e9a044b 9a6f281 8524bdd e9a044b 913d8ed 9a6f281 676db20 e9a044b 7f4ab63 2afd1df d592ac3 93f8cdd e9a044b b135a58 e9a044b b135a58 e9a044b d0c1ef3 e9a044b c9d9cec 80adfc7 3a2303c 80adfc7 c9d9cec e9a044b ce7f56c e9a044b aa16bad e9a044b 1ac50ed e9a044b 2afd1df 676db20 e4d2293 41e6c3c 676db20 e9a044b 673e392 7f4ab63 d592ac3 9c4bb92 2afd1df 9c4bb92 41e6c3c 9c4bb92 dff909e 9c4bb92 dff909e 9c4bb92 7f4ab63 e0aa9bd 7f4ab63 6d9f96d 7f4ab63 2afd1df 673e392 e9a044b 9c4bb92 ef0c9ce d4f0d67 9c4bb92 d4f0d67 93f8cdd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
import gradio as gr
import os
import sys
import argparse
import random
from omegaconf import OmegaConf
import torch
import torchvision
from pytorch_lightning import seed_everything
from huggingface_hub import hf_hub_download
sys.path.insert(0, "scripts/evaluation")
from funcs import (
batch_ddim_sampling_freenoise,
load_model_checkpoint,
)
from utils.utils import instantiate_from_config
def infer(prompt, output_size, seed, num_frames, ddim_steps, unconditional_guidance_scale, save_fps):
window_size = 16
window_stride = 4
if output_size == "320x512":
width = 512
height = 320
ckpt_dir_512 = "checkpoints/base_512_v2"
ckpt_path_512 = "checkpoints/base_512_v2/model.ckpt"
config_512 = "configs/inference_t2v_tconv512_v2.0_freenoise.yaml"
config_512 = OmegaConf.load(config_512)
model_config_512 = config_512.pop("model", OmegaConf.create())
model_512 = instantiate_from_config(model_config_512)
model_512 = model_512.cuda()
if not os.path.exists(ckpt_path_512):
os.makedirs(ckpt_dir_512, exist_ok=True)
hf_hub_download(repo_id="VideoCrafter/VideoCrafter2", filename="model.ckpt", local_dir=ckpt_dir_512)
try:
model_512 = load_model_checkpoint(model_512, ckpt_path_512)
except:
hf_hub_download(repo_id="VideoCrafter/VideoCrafter2", filename="model.ckpt", local_dir=ckpt_dir_512, force_download=True)
model_512 = load_model_checkpoint(model_512, ckpt_path_512)
model_512.eval()
model = model_512
fps = 16
if output_size == "576x1024":
width = 1024
height = 576
ckpt_dir_1024 = "checkpoints/base_1024_v1"
ckpt_path_1024 = "checkpoints/base_1024_v1/model.ckpt"
config_1024 = "configs/inference_t2v_1024_v1.0_freenoise.yaml"
config_1024 = OmegaConf.load(config_1024)
model_config_1024 = config_1024.pop("model", OmegaConf.create())
model_1024 = instantiate_from_config(model_config_1024)
model_1024 = model_1024.cuda()
if not os.path.exists(ckpt_path_1024):
os.makedirs(ckpt_dir_1024, exist_ok=True)
hf_hub_download(repo_id="VideoCrafter/Text2Video-1024", filename="model.ckpt", local_dir=ckpt_dir_1024)
try:
model_1024 = load_model_checkpoint(model_1024, ckpt_path_1024)
except:
hf_hub_download(repo_id="VideoCrafter/Text2Video-1024", filename="model.ckpt", local_dir=ckpt_dir_1024, force_download=True)
model_1024 = load_model_checkpoint(model_1024, ckpt_path_1024)
model_1024.eval()
model = model_1024
fps = 28
num_frames = min(num_frames, 36)
elif output_size == "256x256":
width = 256
height = 256
ckpt_dir_256 = "checkpoints/base_256_v1"
ckpt_path_256 = "checkpoints/base_256_v1/model.ckpt"
config_256 = "configs/inference_t2v_tconv256_v1.0_freenoise.yaml"
config_256 = OmegaConf.load(config_256)
model_config_256 = config_256.pop("model", OmegaConf.create())
model_256 = instantiate_from_config(model_config_256)
model_256 = model_256.cuda()
if not os.path.exists(ckpt_path_256):
os.makedirs(ckpt_dir_256, exist_ok=True)
hf_hub_download(repo_id="VideoCrafter/Text2Video-256", filename="model.ckpt", local_dir=ckpt_dir_256)
try:
model_256 = load_model_checkpoint(model_256, ckpt_path_256)
except:
hf_hub_download(repo_id="VideoCrafter/Text2Video-256", filename="model.ckpt", local_dir=ckpt_dir_256, force_download=True)
model_256 = load_model_checkpoint(model_256, ckpt_path_256)
model_256.eval()
model = model_256
fps = 8
print('Model Loaded.')
if seed is None:
seed = int.from_bytes(os.urandom(2), "big")
print(f"Using seed: {seed}")
seed_everything(seed)
args = argparse.Namespace(
mode="base",
savefps=save_fps,
n_samples=1,
ddim_steps=ddim_steps,
ddim_eta=0.0,
bs=1,
height=height,
width=width,
frames=num_frames,
fps=fps,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_guidance_scale_temporal=None,
cond_input=None,
window_size=window_size,
window_stride=window_stride,
)
## latent noise shape
h, w = args.height // 8, args.width // 8
frames = model.temporal_length if args.frames < 0 else args.frames
channels = model.channels
x_T_total = torch.randn(
[args.n_samples, 1, channels, frames, h, w], device=model.device
).repeat(1, args.bs, 1, 1, 1, 1)
for frame_index in range(args.window_size, args.frames, args.window_stride):
list_index = list(
range(
frame_index - args.window_size,
frame_index + args.window_stride - args.window_size,
)
)
random.shuffle(list_index)
x_T_total[
:, :, :, frame_index : frame_index + args.window_stride
] = x_T_total[:, :, :, list_index]
batch_size = 1
noise_shape = [batch_size, channels, frames, h, w]
fps = torch.tensor([args.fps] * batch_size).to(model.device).long()
prompts = [prompt]
text_emb = model.get_learned_conditioning(prompts)
cond = {"c_crossattn": [text_emb], "fps": fps}
## inference
batch_samples = batch_ddim_sampling_freenoise(
model,
cond,
noise_shape,
args.n_samples,
args.ddim_steps,
args.ddim_eta,
args.unconditional_guidance_scale,
args=args,
x_T_total=x_T_total,
)
video_path = "output.mp4"
vid_tensor = batch_samples[0]
video = vid_tensor.detach().cpu()
video = torch.clamp(video.float(), -1.0, 1.0)
video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w
frame_grids = [
torchvision.utils.make_grid(framesheet, nrow=int(args.n_samples))
for framesheet in video
] # [3, 1*h, n*w]
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w]
grid = (grid + 1.0) / 2.0
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
torchvision.io.write_video(
video_path,
grid,
fps=args.savefps,
video_codec="h264",
options={"crf": "10"},
)
print(video_path)
return video_path
examples = [
["A chihuahua in astronaut suit floating in space, cinematic lighting, glow effect",],
["A corgi is swimming quickly",],
["A bigfoot walking in the snowstorm",],
["Campfire at night in a snowy forest with starry sky in the background",],
["A panda is surfing in the universe",],
]
css = """
#col-container {max-width: 640px; margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
.animate-spin {
animation: spin 1s linear infinite;
}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {
display: flex;
padding-left: 0.5rem !important;
padding-right: 0.5rem !important;
background-color: #000000;
justify-content: center;
align-items: center;
border-radius: 9999px !important;
max-width: 15rem;
height: 36px;
}
div#share-btn-container > div {
flex-direction: row;
background: black;
align-items: center;
}
#share-btn-container:hover {
background-color: #060606;
}
#share-btn {
all: initial;
color: #ffffff;
font-weight: 600;
cursor:pointer;
font-family: 'IBM Plex Sans', sans-serif;
margin-left: 0.5rem !important;
padding-top: 0.5rem !important;
padding-bottom: 0.5rem !important;
right:0;
}
#share-btn * {
all: unset;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
#share-btn-container.hidden {
display: none!important;
}
img[src*='#center'] {
display: inline-block;
margin: unset;
}
.footer {
margin-bottom: 45px;
margin-top: 10px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
"""
<h1 style="text-align: center;">FreeNoise (Longer Text-to-Video)</h1>
<p style="text-align: center;">
FreeNoise: Tuning-Free Longer Video Diffusion via Noise Rescheduling (ICLR 2024)
</p>
<p style="text-align: center;">
<a href="https://arxiv.org/abs/2310.15169" target="_blank"><b>[arXiv]</b></a>
<a href="http://haonanqiu.com/projects/FreeNoise.html" target="_blank"><b>[Project Page]</b></a>
<a href="https://github.com/AILab-CVC/FreeNoise" target="_blank"><b>[Code]</b></a>
</p>
"""
)
prompt_in = gr.Textbox(label="Prompt", placeholder="A chihuahua in astronaut suit floating in space, cinematic lighting, glow effect")
with gr.Row():
with gr.Accordion('FreeNoise Parameters (feel free to adjust these parameters based on your prompt): ', open=False):
with gr.Row():
output_size = gr.Dropdown(["320x512", "576x1024", "256x256"], value="320x512", label="Output Size", info="250s for 512 model, 900s for 1024 model (32 frames). Recovering from sleeping will take more time to download ckpt")
with gr.Row():
num_frames = gr.Slider(label='Frames (a multiple of 4), max 36 for 1024 model',
minimum=16,
maximum=64,
step=4,
value=32)
ddim_steps = gr.Slider(label='DDIM Steps',
minimum=5,
maximum=200,
step=1,
value=50)
with gr.Row():
unconditional_guidance_scale = gr.Slider(label='Unconditional Guidance Scale',
minimum=1.0,
maximum=20.0,
step=0.1,
value=12.0)
save_fps = gr.Slider(label='Save FPS',
minimum=1,
maximum=30,
step=1,
value=10)
with gr.Row():
seed = gr.Slider(label='Random Seed',
minimum=0,
maximum=10000,
step=1,
value=123)
submit_btn = gr.Button("Generate", variant='primary')
video_result = gr.Video(label="Video Output")
gr.Examples(examples=examples, inputs=[prompt_in, output_size, seed, num_frames, ddim_steps, unconditional_guidance_scale, save_fps])
submit_btn.click(fn=infer,
inputs=[prompt_in, output_size, seed, num_frames, ddim_steps, unconditional_guidance_scale, save_fps],
outputs=[video_result],
api_name="zrscp")
demo.queue(max_size=12).launch(show_api=True)
|