Spaces:
Runtime error
Runtime error
Soufianesejjari
commited on
Commit
•
3680e02
1
Parent(s):
c3e50d5
Add application file
Browse files- app/model.py +25 -50
app/model.py
CHANGED
@@ -1,79 +1,54 @@
|
|
1 |
-
from
|
|
|
2 |
from keras.models import load_model
|
3 |
import pickle
|
4 |
import numpy as np
|
5 |
from keras.preprocessing.sequence import pad_sequences
|
6 |
|
7 |
-
app =
|
8 |
|
9 |
max_sequence_length = 180
|
10 |
|
11 |
-
#
|
12 |
try:
|
13 |
model = load_model('word_prediction_model.h5')
|
14 |
except Exception as e:
|
15 |
-
print(f"
|
16 |
model = None
|
17 |
|
18 |
-
#
|
19 |
try:
|
20 |
with open('tokenizer.pickle', 'rb') as handle:
|
21 |
tokenizer = pickle.load(handle)
|
22 |
except Exception as e:
|
23 |
-
print(f"
|
24 |
tokenizer = None
|
25 |
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
if tokenizer is None or model is None:
|
29 |
-
|
|
|
|
|
|
|
30 |
|
31 |
-
# Tokeniser la phrase d'entrée
|
32 |
input_sequence = tokenizer.texts_to_sequences([input_phrase])[0]
|
33 |
-
|
34 |
-
# Remplir la séquence à la longueur maximale de séquence
|
35 |
padded_sequence = pad_sequences([input_sequence], maxlen=max_sequence_length-1, padding='pre')
|
36 |
-
|
37 |
-
# Prédire les probabilités des mots suivants
|
38 |
predicted_probs = model.predict(padded_sequence)[0]
|
39 |
-
|
40 |
-
# Obtenir les indices des mots avec les probabilités les plus élevées
|
41 |
top_indices = predicted_probs.argsort()[-top_n:][::-1]
|
42 |
-
|
43 |
-
# Obtenir les mots correspondants aux indices
|
44 |
top_words = [tokenizer.index_word[index] for index in top_indices]
|
45 |
-
|
46 |
-
# Obtenir les probabilités correspondantes
|
47 |
top_probabilities = predicted_probs[top_indices]
|
48 |
-
|
49 |
-
return top_words, top_probabilities
|
50 |
-
@app.route('/test', methods=['GET'])
|
51 |
-
def test():
|
52 |
-
data = request.get_json()
|
53 |
-
input_phrase = data['input_phrase']
|
54 |
|
55 |
-
|
56 |
-
response = {
|
57 |
-
"top_words": "test",
|
58 |
-
"top_probabilities": input_phrase
|
59 |
-
}
|
60 |
-
|
61 |
-
return jsonify(response)
|
62 |
-
@app.route('/predict', methods=['POST'])
|
63 |
-
def predict():
|
64 |
-
try:
|
65 |
-
data = request.get_json()
|
66 |
-
input_phrase = data['input_phrase']
|
67 |
-
top_n = data.get('top_n', 5) # Par défaut, retourne les 5 meilleurs mots
|
68 |
-
|
69 |
-
top_words, top_probabilities = predict_next_words_with_proba(input_phrase, top_n)
|
70 |
-
|
71 |
-
response = {
|
72 |
-
"top_words": top_words,
|
73 |
-
"top_probabilities": top_probabilities.tolist()
|
74 |
-
}
|
75 |
-
|
76 |
-
return jsonify(response)
|
77 |
-
except Exception as e:
|
78 |
-
return jsonify(error=str(e)), 500
|
79 |
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
from keras.models import load_model
|
4 |
import pickle
|
5 |
import numpy as np
|
6 |
from keras.preprocessing.sequence import pad_sequences
|
7 |
|
8 |
+
app = FastAPI()
|
9 |
|
10 |
max_sequence_length = 180
|
11 |
|
12 |
+
# Load the trained model
|
13 |
try:
|
14 |
model = load_model('word_prediction_model.h5')
|
15 |
except Exception as e:
|
16 |
+
print(f"Error loading the model: {str(e)}")
|
17 |
model = None
|
18 |
|
19 |
+
# Load the tokenizer
|
20 |
try:
|
21 |
with open('tokenizer.pickle', 'rb') as handle:
|
22 |
tokenizer = pickle.load(handle)
|
23 |
except Exception as e:
|
24 |
+
print(f"Error loading the tokenizer: {str(e)}")
|
25 |
tokenizer = None
|
26 |
|
27 |
+
class PredictionRequest(BaseModel):
|
28 |
+
input_phrase: str
|
29 |
+
top_n: int = 5
|
30 |
+
|
31 |
+
class PredictionResponse(BaseModel):
|
32 |
+
top_words: list
|
33 |
+
top_probabilities: list
|
34 |
+
|
35 |
+
@app.post("/predict", response_model=PredictionResponse)
|
36 |
+
def predict(request: PredictionRequest):
|
37 |
if tokenizer is None or model is None:
|
38 |
+
raise HTTPException(status_code=500, detail="Model or tokenizer not loaded")
|
39 |
+
|
40 |
+
input_phrase = request.input_phrase
|
41 |
+
top_n = request.top_n
|
42 |
|
|
|
43 |
input_sequence = tokenizer.texts_to_sequences([input_phrase])[0]
|
|
|
|
|
44 |
padded_sequence = pad_sequences([input_sequence], maxlen=max_sequence_length-1, padding='pre')
|
|
|
|
|
45 |
predicted_probs = model.predict(padded_sequence)[0]
|
|
|
|
|
46 |
top_indices = predicted_probs.argsort()[-top_n:][::-1]
|
|
|
|
|
47 |
top_words = [tokenizer.index_word[index] for index in top_indices]
|
|
|
|
|
48 |
top_probabilities = predicted_probs[top_indices]
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
return {"top_words": top_words, "top_probabilities": top_probabilities.tolist()}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
@app.get("/")
|
53 |
+
def read_root():
|
54 |
+
return {"message": "Hello from MDS Darija Prediction Team!"}
|