MrGanesh's picture
Update app.py
78128cf
raw
history blame
1.03 kB
import streamlit as st
from transformers import pipeline
@st.cache(allow_output_mutation=True)
def load_summarizer():
model = pipeline("summarization", model="google/bigbird-pegasus-large-bigpatent")
return model
summarizer = load_summarizer()
st.title("Patent Text Summarizer")
sentence = st.text_area('Please paste your Patent Text :', height=30)
button = st.button("Summarize")
max = st.sidebar.slider('Select max', 50, 500, step=10, value=120)
min = st.sidebar.slider('Select min', 10, 50, step=10, value=50)
#do_sample = st.sidebar.checkbox("Do sample", value=False)
with st.spinner("Generating Patent Summary.."):
if button and sentence:
#chunks = generate_chunks(sentence)
res = summarizer(sentence,
max_length=max,
min_length=min,
#do_sample=do_sample
)
text = ' '.join([summ['summary_text'] for summ in res])
# st.write(result[0]['summary_text'])
st.write(text)