Spaces:
Running
Running
File size: 6,312 Bytes
62d807b 8e4ace7 c51def8 8e4ace7 62d807b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
# !usr/bin/env python
# -*- coding:utf-8 -*-
'''
Description :
Version : 1.0
Author : MrYXJ
Mail : [email protected]
Github : https://github.com/MrYxJ
Date : 2023-09-05 23:28:32
LastEditTime : 2023-09-09 19:14:20
Copyright (C) 2023 mryxj. All rights reserved.
'''
import gradio as gr
import torch
from accelerate.commands.estimate import check_has_model
from urllib.parse import urlparse
from huggingface_hub.utils import GatedRepoError
from huggingface_hub.utils import RepositoryNotFoundError
from calflops import create_empty_model
from calflops import calculate_flops_hf
from calflops import flops_to_string
from calflops import macs_to_string
from calflops import params_to_string
def calculate_flops_in_hugging_space(model_name: str,
empty_model: torch.nn.modules,
access_token: str,
input_shape: tuple,
bp_factor: float,
output_unit: str):
"Calculates the FLOPs and Params usage for a model init on `meta` device"
try:
# print("model_name:", model_name)
# print("empty_model:", empty_model)
# print("access_token:", access_token)
# print("input_shape:", input_shape)
flops, macs, params, return_print = calculate_flops_hf(model_name=model_name,
# empty_model=empty_model,
input_shape=input_shape,
access_token=access_token,
output_as_string=False,
return_results=True)
except Exception as e:
print("Error info:", e)
raise gr.Error(
f"Model `{model_name}` does not support inference on the meta device, You can download the complete model parameters to your local and using the python package calflops to calculate FLOPs and Params of model `{model_name}`."
)
fw_bp_flops = flops * (1.0 + bp_factor)
fw_bp_macs = macs * (1.0 + bp_factor)
if output_unit == "":
pass
elif output_unit == "auto":
params = params_to_string(params, units=None, precision=3)
flops = flops_to_string(flops, units=None, precision=3)
macs = macs_to_string(macs, units=None, precision=3)
fw_bp_flops = flops_to_string(fw_bp_flops, units=None, precision=3)
fw_bp_macs = macs_to_string(fw_bp_macs, units=None, precision=3)
elif output_unit == "T" or output_unit == "G" or output_unit == "M" or output_unit == "K" or output_unit == "m" or output_unit == "u":
params = params_to_string(params, units=output_unit, precision=3)
flops = flops_to_string(flops, units=output_unit, precision=3)
macs = macs_to_string(macs, units=output_unit, precision=3)
fw_bp_flops = flops_to_string(fw_bp_flops, units=output_unit, precision=3)
fw_bp_macs = macs_to_string(fw_bp_macs, units=output_unit, precision=3)
return_lines = return_print.split("\n")
return_start = False
return_print = ""
for line in return_lines[:-2]:
if return_start:
return_print += line + "\n"
if "Detailed" in line:
return_start = True
data = []
data.append(
{ "Total Training Params": params,
"Forward FLOPs": flops,
"Forward MACs": macs,
"Forward+Backward FLOPs": fw_bp_flops,
"Forward+Backward MACs": fw_bp_macs
}
)
return data, return_print
def extract_from_url(name: str):
"Checks if `name` is a URL, and if so converts it to a model name"
is_url = False
try:
result = urlparse(name)
is_url = all([result.scheme, result.netloc])
except Exception:
is_url = False
# Pass through if not a URL
if not is_url:
return name
else:
path = result.path
return path[1:]
def translate_llama2(text):
"Translates llama-2 to its hf counterpart"
if not text.endswith("-hf"):
return text + "-hf"
return text
def get_mode_from_hf(model_name: str, library: str, access_token: str):
"Finds and grabs model from the Hub, and initializes on `meta`"
if "meta-llama" in model_name:
model_name = translate_llama2(model_name)
if library == "auto":
library = None
model_name = extract_from_url(model_name)
try:
model = create_empty_model(model_name, library_name=library, trust_remote_code=True, access_token=access_token)
except GatedRepoError:
raise gr.Error(
f"Model `{model_name}` is a gated model, please ensure to pass in your access token and try again if you have access. You can find your access token here : https://huggingface.co/settings/tokens. "
)
except RepositoryNotFoundError:
raise gr.Error(f"Model `{model_name}` was not found on the Hub, please try another model name.")
except ValueError:
raise gr.Error(
f"Model `{model_name}` does not have any library metadata on the Hub, please manually select a library_name to use (such as `transformers`)"
)
except (RuntimeError, OSError) as e:
library = check_has_model(e)
if library != "unknown":
raise gr.Error(
f"Tried to load `{model_name}` with `{library}` but a possible model to load was not found inside the repo."
)
raise gr.Error(
f"Model `{model_name}` had an error, please open a discussion on the model's page with the error message and name: `{e}`"
)
except ImportError:
# hacky way to check if it works with `trust_remote_code=False`
model = create_empty_model(
model_name, library_name=library, trust_remote_code=False, access_token=access_token
)
except Exception as e:
raise gr.Error(
f"Model `{model_name}` had an error, please open a discussion on the model's page with the error message and name: `{e}`"
)
return model
|