File size: 1,539 Bytes
4c4ff57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import os
from typing import Dict, Union

import numpy as np
import PIL
import torch
from mivolo.structures import PersonAndFaceResult
from ultralytics import YOLO
# from ultralytics.yolo.engine.results import Results

# because of ultralytics bug it is important to unset CUBLAS_WORKSPACE_CONFIG after the module importing
os.unsetenv("CUBLAS_WORKSPACE_CONFIG")


class Detector:
    def __init__(
        self,
        weights: str,
        device: str = "cpu",
        half: bool = True,
        verbose: bool = False,
        conf_thresh: float = 0.4,
        iou_thresh: float = 0.7,
    ):
        self.yolo = YOLO(weights)
        self.yolo.fuse()

        self.device = torch.device(device)
        self.half = half and self.device.type != "cpu"

        if self.half:
            self.yolo.model = self.yolo.model.half()

        self.detector_names: Dict[int, str] = self.yolo.model.names

        # init yolo.predictor
        self.detector_kwargs = {
            "conf": conf_thresh, "iou": iou_thresh, "half": self.half, "verbose": verbose}
        # self.yolo.predict(**self.detector_kwargs)

    def predict(self, image: Union[np.ndarray, str, "PIL.Image"]) -> PersonAndFaceResult:
        results = self.yolo.predict(image, **self.detector_kwargs)[0]
        return PersonAndFaceResult(results)

    def track(self, image: Union[np.ndarray, str, "PIL.Image"]) -> PersonAndFaceResult:
        results = self.yolo.track(
            image, persist=True, **self.detector_kwargs)[0]
        return PersonAndFaceResult(results)