from sentence_transformers import SentenceTransformer, CrossEncoder, util import torch import pickle import pandas as pd import gradio as gr # bi_encoder = SentenceTransformer("microsoft/Multilingual-MiniLM-L12-H384") cross_encoder = CrossEncoder("cross-encoder/mmarco-mMiniLMv2-L12-H384-v1") # Corpus from quran my_file = open("quran-simple-clean.txt", "r",encoding="utf-8") data = my_file.read() quran = data.split("\n") my_file = open("tafsir-simple-clean.txt", "r",encoding="utf-8") data = my_file.read() corpus = data.split("\n") del data embedder = SentenceTransformer('symanto/sn-xlm-roberta-base-snli-mnli-anli-xnli') corpus_embeddings = embedder.encode(corpus, convert_to_tensor=True) def search(query,top_k=100): print("New query:") print(query) ans=[] ##### Sematic Search ##### # Encode the query using the bi-encoder and find potentially relevant passages question_embedding = embedder.encode(query, convert_to_tensor=True) hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k) hits = hits[0] # Get the hits for the first query ##### Re-Ranking ##### # Now, score all retrieved passages with the cross_encoder cross_inp = [[query, corpus[hit['corpus_id']]] for hit in hits] cross_scores = cross_encoder.predict(cross_inp) # Sort results by the cross-encoder scores for idx in range(len(cross_scores)): hits[idx]['cross-score'] = cross_scores[idx] hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True) for idx, hit in enumerate(hits[0:5]): ans.append(quran[hit['corpus_id']]) return "\n\n".join(ans) exp=[""] desc="هذا البحث يعتمد على تفسير السعدي في البحث." inp=gr.inputs.Textbox(lines=1, placeholder=None, default="", label="أدخل كلمات البحث هنا") out=gr.outputs.Textbox(type="auto",label="نتائج البحث") iface = gr.Interface(fn=search, inputs=inp, outputs=out,examples=exp,article=desc,title="البحث في معاني تفسير السعدي") iface.launch(share=True)