Spaces:
Runtime error
Runtime error
import gradio as gr | |
import jax | |
import numpy as np | |
import jax.numpy as jnp | |
from flax.jax_utils import replicate | |
from flax.training.common_utils import shard | |
from PIL import Image | |
from diffusers import FlaxStableDiffusionPipeline | |
def create_key(seed=0): | |
return jax.random.PRNGKey(seed) | |
pipe, params = FlaxStableDiffusionPipeline.from_pretrained( | |
"MuhammadHanif/stable-diffusion-v1-5-high-res", | |
dtype=jnp.bfloat16, | |
use_memory_efficient_attention=True | |
) | |
def infer(prompts, negative_prompts, width=1088, height=1088, inference_steps=30, seed=0): | |
num_samples = 1 #jax.device_count() | |
rng = create_key(int(seed)) | |
rng = jax.random.split(rng, jax.device_count()) | |
prompt_ids = pipe.prepare_inputs([prompts] * num_samples) | |
negative_prompt_ids = pipe.prepare_inputs([negative_prompts] * num_samples) | |
p_params = replicate(params) | |
prompt_ids = shard(prompt_ids) | |
negative_prompt_ids = shard(negative_prompt_ids) | |
output = pipe( | |
prompt_ids=prompt_ids, | |
params=p_params, | |
height=height, | |
width=width, | |
prng_seed=rng, | |
num_inference_steps=inference_steps, | |
neg_prompt_ids=negative_prompt_ids, | |
jit=True, | |
).images | |
output_images = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:]))) | |
return output_images[0] | |
prompt_input = gr.inputs.Textbox( | |
label="Prompt", | |
placeholder="a highly detailed mansion in the autumn by studio ghibli, makoto shinkai" | |
) | |
neg_prompt_input = gr.inputs.Textbox( | |
label="Negative Prompt", | |
placeholder="" | |
) | |
width_slider = gr.inputs.Slider( | |
minimum=512, maximum=2048, default=1088, step=64, label="width" | |
) | |
height_slider = gr.inputs.Slider( | |
minimum=512, maximum=2048, default=1088, step=64, label="height" | |
) | |
inf_steps_input = gr.inputs.Slider( | |
minimum=1, maximum=100, default=30, step=1, label="Inference Steps" | |
) | |
seed_input = gr.inputs.Number(default=0, label="Seed") | |
app = gr.Interface( | |
fn=infer, | |
inputs=[prompt_input, neg_prompt_input, width_slider, height_slider, inf_steps_input, seed_input], | |
outputs="image", | |
title="Stable Diffusion High Resolution", | |
description=( | |
"Based on stable diffusion 1.5 and fine-tuned on 576x576 up to 1088x1088 images, " | |
"Stable Diffusion High Resolution is compartible with another SD1.5 model and mergeable with other SD1.5 model, " | |
"giving other model to generate high resolution images without using upscaler." | |
), | |
examples=[ | |
["a highly detailed mansion in the autumn by studio ghibli, makoto shinkai","", 1088, 1088, 30, 0], | |
["best high quality landscape, in the morning light, Overlooking TOKYO beautiful city with Fujiyama, from a tall house, by greg rutkowski and thomas kinkade, Trending on artstation makoto shinkai style","", 1088, 576, 30, 0], | |
[" assassin's creed black flag, hd, 4k, dlsr ","", 960, 960, 30, 4154731], | |
], | |
) | |
app.launch() |