tonic commited on
Commit
43104b8
1 Parent(s): 4062737

language list and refactor interface + bala's bugfixes

Browse files
Files changed (2) hide show
  1. app.py +42 -94
  2. requirements.txt +2 -1
app.py CHANGED
@@ -5,7 +5,7 @@ from surya.ocr import run_ocr
5
  from surya.model.detection.segformer import load_model as load_det_model, load_processor as load_det_processor
6
  from surya.model.recognition.model import load_model as load_rec_model
7
  from surya.model.recognition.processor import load_processor as load_rec_processor
8
- from lang_list import LANGUAGE_NAME_TO_CODE, TEXT_SOURCE_LANGUAGE_NAMES, S2ST_TARGET_LANGUAGE_NAMES
9
  from gradio_client import Client
10
  from dotenv import load_dotenv
11
  import requests
@@ -13,6 +13,7 @@ from io import BytesIO
13
  import cohere
14
  import os
15
  import re
 
16
 
17
 
18
  title = "# Welcome to AyaTonic"
@@ -21,6 +22,7 @@ description = "Learn a New Language With Aya"
21
  load_dotenv()
22
  COHERE_API_KEY = os.getenv('CO_API_KEY')
23
  SEAMLESSM4T = os.getenv('SEAMLESSM4T')
 
24
 
25
  inputlanguage = ""
26
  producetext = "\n\nProduce a complete expositional blog post in {target_language} based on the above :"
@@ -68,11 +70,13 @@ class TaggedPhraseExtractor:
68
 
69
  co = cohere.Client(COHERE_API_KEY)
70
  audio_client = Client(SEAMLESSM4T)
 
71
 
72
  def process_audio_to_text(audio_path, inputlanguage="English"):
73
  """
74
  Convert audio input to text using the Gradio client.
75
  """
 
76
  result = audio_client.predict(
77
  audio_path,
78
  inputlanguage,
@@ -80,19 +84,20 @@ def process_audio_to_text(audio_path, inputlanguage="English"):
80
  api_name="/s2tt"
81
  )
82
  print("Audio Result: ", result)
83
- return result['text'] # Adjust based on the actual response
84
 
85
- def process_text_to_audio(text, target_language="English"):
86
  """
87
  Convert text input to audio using the Gradio client.
88
  """
 
89
  result = audio_client.predict(
90
  text,
91
- target_language,
92
- target_language, # could be make a variation for learning content
93
  api_name="/t2st"
94
  )
95
- return result['audio'] # Adjust based on the actual response
96
 
97
  class OCRProcessor:
98
  def __init__(self, langs=["en"]):
@@ -114,7 +119,7 @@ class OCRProcessor:
114
  predictions = run_ocr([pdf_path], [self.langs], self.det_model, self.det_processor, self.rec_model, self.rec_processor)
115
  return predictions[0] # Assuming the first item in predictions contains the desired text
116
 
117
- def process_input(image=None, file=None, audio=None, text=""):
118
  ocr_processor = OCRProcessor()
119
  final_text = text
120
  if image is not None:
@@ -164,94 +169,37 @@ def process_input(image=None, file=None, audio=None, text=""):
164
  )
165
  processed_text = response.generations[0].text
166
 
167
- audio_output = process_text_to_audio(processed_text)
168
 
169
  return processed_text, audio_output
170
- # Define Gradio interface
171
- iface = gr.Interface(
172
- fn=process_input,
173
- inputs=[
174
- gr.Image(type="pil", label="Camera Input"),
175
- gr.File(label="File Upload"),
176
- gr.Audio(sources="microphone", type="filepath", label="Mic Input"),
177
- gr.Textbox(lines=2, label="Text Input"),
178
- gr.Dropdown(choices=TEXT_SOURCE_LANGUAGE_NAMES, label="Input Language"),
179
- gr.Dropdown(choices=TEXT_SOURCE_LANGUAGE_NAMES, label="Target Language")
180
- ],
181
- outputs=[
182
- RichTextbox(label="Processed Text"),
183
- gr.Audio(label="Audio Output")
184
- ],
185
- title=title,
186
- description=description
187
- )
188
-
189
- if __name__ == "__main__":
190
- iface.launch()
191
-
192
-
193
- # co = cohere.Client('yhA228YGeZSl1ctten8LQxw2dky2nngHetXFjV2Q') # This is your trial API key
194
- # response = co.generate(
195
- # model='c4ai-aya',
196
- # prompt='एक यांत्रिक घड़ी दिन के समय को प्रदान करने के लिए एक गैर-इलेक्ट्रॉनिक तंत्र का उपयोग करती है। एक मुख्य स्प्रिंग का उपयोग यांत्रिक तंत्र को ऊर्जा संग्रहीत करने के लिए किया जाता है। एक यांत्रिक घड़ी में दांतों का एक कुंडल होता है जो धीरे-धीरे मुख्य स्प्रिंग से संचालित होता है। दांतों के कुंडल को एक यांत्रिक तंत्र में स्थानांतरित करने के लिए पहियों की एक श्रृंखला का उपयोग किया जाता है जो हाथों को घड़ी के चेहरे पर दाईं ओर ले जाता है। घड़ी के तंत्र को स्थिर करने और यह सुनिश्चित करने के लिए कि हाथ सही दिशा में घूमते हैं, एक कंपन का उपयोग किया जाता है। ',
197
- # max_tokens=3674,
198
- # temperature=0.9,
199
- # k=0,
200
- # stop_sequences=[],
201
- # return_likelihoods='NONE')
202
- # print('Prediction: {}'.format(response.generations[0].text))
203
-
204
- # client = Client("https://facebook-seamless-m4t-v2-large.hf.space/--replicas/nq5nn/")
205
- # result = client.predict(
206
- # https://github.com/gradio-app/gradio/raw/main/test/test_files/audio_sample.wav, # filepath in 'Input speech' Audio component
207
- # Afrikaans, # Literal[Afrikaans, Amharic, Armenian, Assamese, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Burmese, Cantonese, Catalan, Cebuano, Central Kurdish, Croatian, Czech, Danish, Dutch, Egyptian Arabic, English, Estonian, Finnish, French, Galician, Ganda, Georgian, German, Greek, Gujarati, Halh Mongolian, Hebrew, Hindi, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kyrgyz, Lao, Lithuanian, Luo, Macedonian, Maithili, Malayalam, Maltese, Mandarin Chinese, Marathi, Meitei, Modern Standard Arabic, Moroccan Arabic, Nepali, North Azerbaijani, Northern Uzbek, Norwegian Bokmål, Norwegian Nynorsk, Nyanja, Odia, Polish, Portuguese, Punjabi, Romanian, Russian, Serbian, Shona, Sindhi, Slovak, Slovenian, Somali, Southern Pashto, Spanish, Standard Latvian, Standard Malay, Swahili, Swedish, Tagalog, Tajik, Tamil, Telugu, Thai, Turkish, Ukrainian, Urdu, Vietnamese, Welsh, West Central Oromo, Western Persian, Yoruba, Zulu] in 'Source language' Dropdown component
208
- # Bengali, # Literal[Bengali, Catalan, Czech, Danish, Dutch, English, Estonian, Finnish, French, German, Hindi, Indonesian, Italian, Japanese, Korean, Maltese, Mandarin Chinese, Modern Standard Arabic, Northern Uzbek, Polish, Portuguese, Romanian, Russian, Slovak, Spanish, Swahili, Swedish, Tagalog, Telugu, Thai, Turkish, Ukrainian, Urdu, Vietnamese, Welsh, Western Persian] in 'Target language' Dropdown component
209
- # api_name="/s2st"
210
- # )
211
- # print(result)
212
-
213
- # co = cohere.Client('yhA228YGeZSl1ctten8LQxw2dky2nngHetXFjV2Q')
214
- # response = co.generate(
215
- # model='command-nightly',
216
- # prompt='Les mécanismes de montres mécaniques\n\nLes mécanismes de montres mécaniques sont des mécanismes qui indiquent la journée, mais pas l\'électronique. Elles utilisent un ressort principal pour stocker l\'énergie nécessaire au fonctionnement des mécanismes. Un train d\'engrenages est utilisé pour transférer l\'énergie du ressort principal à un ensemble de roues qui font tourner les aiguilles dans le sens horaire sur le cadran de la montre.\n\nLes mécanismes de montres mécaniques sontdakshineswar omkarnathji, qui sont des lieux de culte qui sont construits dans le temple. Les engrenages sont des roues qui sont utilisées pour transférer l\'énergie du ressort principal à un ensemble de roues qui font tourner les aiguilles dans le sens horaire sur le cadran de la montre.\n\nLe ressort principal est un ressort qui est utilisé pour stocker l\'énergie nécessaire au fonctionnement des mécanismes de la montre. Le ressort principal est un ressort qui est utilisé pour stocker l\'énergie nécessaire au fonctionnement des mécanismes de la montre, et il est utilisé pour transférer l\'énergie aux engrenages, qui sont des roues qui sont utilisées pour faire tourner les aiguilles dans le sens horaire sur le cadran de la montre.\n\nLes engrenages sont des roues qui sont utilisées pour faire tourner les aiguilles dans le sens horaire sur le cadran de la montre, et elles sont utilisées pour transférer l\'énergie du ressort principal aux roues qui font tourner les aiguilles dans le sens horaire sur le cadran de la montre.\n\nLes mécanismes de montres mécaniques sont des mécanismes qui indiquent la journée, et elles sont utilisées pour transférer l\'énergie du ressort principal à un ensemble de roues qui font tourner les aiguilles dans le sens horaire sur le cadran de la montre.\n\nLes mécanismes de montres mécaniques sont des mécanismes qui indiquent la journée, et elles sont utilisées pour transférer l\'énergie du ressort principal à un ensemble de roues qui font tourner les aiguilles dans le sens horaire sur le cadran de la montre, et elles sont utilisées pour stabiliser le mécanisme de la montre, et pour s\'assurer que les aiguilles tournent dans le bon sens.\n\nthe above text is a learning aid. you must use rich text format to rewrite the above and add 1 . a red color tags for nouns 2. a blue color tag for verbs 3. a green color tag for adjectives and adverbs:',
217
- # max_tokens=7294,
218
- # temperature=0.6,
219
- # k=0,
220
- # stop_sequences=[],
221
- # return_likelihoods='NONE')
222
- # print('Prediction: {}'.format(response.generations[0].text))
223
- # example = RichTextbox().example_inputs()
224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
225
 
226
-
227
- # iface = gr.Interface(
228
- # fn=process_input,
229
- # inputs=[
230
- # gr.Image(type="pil", label="Camera Input"),
231
- # gr.File(label="File Upload"),
232
- # gr.Audio(sources="microphone", type="filepath", label="Mic Input"),
233
- # gr.Textbox(lines=2, label="Text Input"),
234
- # gr.Dropdown(choices=TEXT_SOURCE_LANGUAGE_NAMES, label="Input Language"),
235
- # gr.Dropdown(choices=TEXT_SOURCE_LANGUAGE_NAMES, label="Target Language")
236
- # ],
237
- # outputs=[
238
- # gr.RichTextbox(label="Processed Text"),
239
- # gr.Audio(label="Audio Output")
240
- # ],
241
- # title="OCR and Speech Processing App",
242
- # description="This app processes images, PDFs, and audio inputs to generate text and audio outputs."
243
- # )
244
-
245
- # if __name__ == "__main__":
246
- # # iface.launch()
247
-
248
- # demo = gr.Interface(
249
- # lambda x:x,
250
- # RichTextbox(), # interactive version of your component
251
- # RichTextbox(), # static version of your component
252
- # examples=[[example]], # uncomment this line to view the "example version" of your component
253
- # )
254
-
255
-
256
- # if __name__ == "__main__":
257
- # demo.launch()
 
5
  from surya.model.detection.segformer import load_model as load_det_model, load_processor as load_det_processor
6
  from surya.model.recognition.model import load_model as load_rec_model
7
  from surya.model.recognition.processor import load_processor as load_rec_processor
8
+ from lang_list import TEXT_SOURCE_LANGUAGE_NAMES
9
  from gradio_client import Client
10
  from dotenv import load_dotenv
11
  import requests
 
13
  import cohere
14
  import os
15
  import re
16
+ import pandas as pd
17
 
18
 
19
  title = "# Welcome to AyaTonic"
 
22
  load_dotenv()
23
  COHERE_API_KEY = os.getenv('CO_API_KEY')
24
  SEAMLESSM4T = os.getenv('SEAMLESSM4T')
25
+ df = pd.read_csv("lang_list.csv")
26
 
27
  inputlanguage = ""
28
  producetext = "\n\nProduce a complete expositional blog post in {target_language} based on the above :"
 
70
 
71
  co = cohere.Client(COHERE_API_KEY)
72
  audio_client = Client(SEAMLESSM4T)
73
+ # client = Client(SEAMLESSM4T)
74
 
75
  def process_audio_to_text(audio_path, inputlanguage="English"):
76
  """
77
  Convert audio input to text using the Gradio client.
78
  """
79
+ audio_client = Client(SEAMLESSM4T)
80
  result = audio_client.predict(
81
  audio_path,
82
  inputlanguage,
 
84
  api_name="/s2tt"
85
  )
86
  print("Audio Result: ", result)
87
+ return result[0]
88
 
89
+ def process_text_to_audio(text, translatefrom, translateto):
90
  """
91
  Convert text input to audio using the Gradio client.
92
  """
93
+ audio_client = Client(SEAMLESSM4T)
94
  result = audio_client.predict(
95
  text,
96
+ translatefrom,
97
+ translateto,
98
  api_name="/t2st"
99
  )
100
+ return result[0]
101
 
102
  class OCRProcessor:
103
  def __init__(self, langs=["en"]):
 
119
  predictions = run_ocr([pdf_path], [self.langs], self.det_model, self.det_processor, self.rec_model, self.rec_processor)
120
  return predictions[0] # Assuming the first item in predictions contains the desired text
121
 
122
+ def process_input(image=None, file=None, audio=None, text="", translateto = "English", translatefrom = "English" ):
123
  ocr_processor = OCRProcessor()
124
  final_text = text
125
  if image is not None:
 
169
  )
170
  processed_text = response.generations[0].text
171
 
172
+ audio_output = process_text_to_audio(processed_text, translateto, translateto)
173
 
174
  return processed_text, audio_output
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
175
 
176
+ def main():
177
+ with gr.Blocks() as demo:
178
+ gr.Markdown(title)
179
+ gr.Markdown(description)
180
+
181
+ with gr.Row():
182
+ input_language = gr.Dropdown(choices=df["name"].to_list(), label="Your Native Language")
183
+ target_language = gr.Dropdown(choices=df["name"].to_list(), label="Language To Learn")
184
+
185
+ with gr.Accordion("Talk To 🌟AyaTonic"):
186
+ with gr.Tab("🤙🏻Audio & Text"):
187
+ audio_input = gr.Audio(sources="microphone", type="filepath", label="Mic Input")
188
+ text_input = gr.Textbox(lines=2, label="Text Input")
189
+ with gr.Tab("📸Image & File"):
190
+ image_input = gr.Image(type="pil", label="Camera Input")
191
+ file_input = gr.File(label="File Upload")
192
+
193
+ process_button = gr.Button("🌟AyaTonic")
194
+
195
+ processed_text_output = RichTextbox(label="Processed Text")
196
+ audio_output = gr.Audio(label="Audio Output")
197
+
198
+ process_button.click(
199
+ fn=process_input,
200
+ inputs=[image_input, file_input, audio_input, text_input, input_language, target_language],
201
+ outputs=[processed_text_output, audio_output]
202
+ )
203
 
204
+ if __name__ == "__main__":
205
+ main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
requirements.txt CHANGED
@@ -6,4 +6,5 @@ surya-ocr
6
  pillow
7
  torchvision
8
  torch
9
- python-dotenv
 
 
6
  pillow
7
  torchvision
8
  torch
9
+ python-dotenv
10
+ pandas