Spaces:
Sleeping
Sleeping
File size: 10,720 Bytes
bcec54e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import sys
from ldm.util import instantiate_from_config
from transformers.models.clip.modeling_clip import CLIPTextModel
from omegaconf import OmegaConf
from lib.mask_predictor import SimpleDecoding
from evp.models import UNetWrapper, TextAdapterRefer
def icnr(x, scale=2, init=nn.init.kaiming_normal_):
"""
Checkerboard artifact free sub-pixel convolution
https://arxiv.org/abs/1707.02937
"""
ni,nf,h,w = x.shape
ni2 = int(ni/(scale**2))
k = init(torch.zeros([ni2,nf,h,w])).transpose(0, 1)
k = k.contiguous().view(ni2, nf, -1)
k = k.repeat(1, 1, scale**2)
k = k.contiguous().view([nf,ni,h,w]).transpose(0, 1)
x.data.copy_(k)
class PixelShuffle(nn.Module):
"""
Real-Time Single Image and Video Super-Resolution
https://arxiv.org/abs/1609.05158
"""
def __init__(self, n_channels, scale):
super(PixelShuffle, self).__init__()
self.conv = nn.Conv2d(n_channels, n_channels*(scale**2), kernel_size=1)
icnr(self.conv.weight)
self.shuf = nn.PixelShuffle(scale)
self.relu = nn.ReLU()
def forward(self,x):
x = self.shuf(self.relu(self.conv(x)))
return x
class AttentionModule(nn.Module):
def __init__(self, in_channels, out_channels):
super(AttentionModule, self).__init__()
# Convolutional Layers
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
# Group Normalization
self.group_norm = nn.GroupNorm(20, out_channels)
# ReLU Activation
self.relu = nn.ReLU()
# Spatial Attention
self.spatial_attention = nn.Sequential(
nn.Conv2d(in_channels, 1, kernel_size=1),
nn.Sigmoid()
)
def forward(self, x):
# Apply spatial attention
spatial_attention = self.spatial_attention(x)
x = x * spatial_attention
# Apply convolutional layer
x = self.conv1(x)
x = self.group_norm(x)
x = self.relu(x)
return x
class AttentionDownsamplingModule(nn.Module):
def __init__(self, in_channels, out_channels, scale_factor=2):
super(AttentionDownsamplingModule, self).__init__()
# Spatial Attention
self.spatial_attention = nn.Sequential(
nn.Conv2d(in_channels, 1, kernel_size=1),
nn.Sigmoid()
)
# Channel Attention
self.channel_attention = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(in_channels, in_channels // 8, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels // 8, in_channels, kernel_size=1),
nn.Sigmoid()
)
# Convolutional Layers
if scale_factor == 2:
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
elif scale_factor == 4:
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=2, padding=1)
# Group Normalization
self.group_norm = nn.GroupNorm(20, out_channels)
# ReLU Activation
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
# Apply spatial attention
spatial_attention = self.spatial_attention(x)
x = x * spatial_attention
# Apply channel attention
channel_attention = self.channel_attention(x)
x = x * channel_attention
# Apply convolutional layers
x = self.conv1(x)
x = self.group_norm(x)
x = self.relu(x)
x = self.conv2(x)
x = self.group_norm(x)
x = self.relu(x)
return x
class AttentionUpsamplingModule(nn.Module):
def __init__(self, in_channels, out_channels):
super(AttentionUpsamplingModule, self).__init__()
# Spatial Attention for outs[2]
self.spatial_attention = nn.Sequential(
nn.Conv2d(in_channels, 1, kernel_size=1),
nn.Sigmoid()
)
# Channel Attention for outs[2]
self.channel_attention = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(in_channels, in_channels // 8, kernel_size=1),
nn.ReLU(),
nn.Conv2d(in_channels // 8, in_channels, kernel_size=1),
nn.Sigmoid()
)
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
# Group Normalization
self.group_norm = nn.GroupNorm(20, out_channels)
# ReLU Activation
self.relu = nn.ReLU()
self.upscale = PixelShuffle(in_channels, 2)
def forward(self, x):
# Apply spatial attention
spatial_attention = self.spatial_attention(x)
x = x * spatial_attention
# Apply channel attention
channel_attention = self.channel_attention(x)
x = x * channel_attention
# Apply convolutional layers
x = self.conv1(x)
x = self.group_norm(x)
x = self.relu(x)
x = self.conv2(x)
x = self.group_norm(x)
x = self.relu(x)
# Upsample
x = self.upscale(x)
return x
class ConvLayer(nn.Module):
def __init__(self, in_channels, out_channels):
super(ConvLayer, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 1),
nn.GroupNorm(20, out_channels),
nn.ReLU(),
)
def forward(self, x):
x = self.conv1(x)
return x
class InverseMultiAttentiveFeatureRefinement(nn.Module):
def __init__(self, in_channels_list):
super(InverseMultiAttentiveFeatureRefinement, self).__init__()
self.layer1 = AttentionModule(in_channels_list[0], in_channels_list[0])
self.layer2 = AttentionDownsamplingModule(in_channels_list[0], in_channels_list[0]//2, scale_factor = 2)
self.layer3 = ConvLayer(in_channels_list[0]//2 + in_channels_list[1], in_channels_list[1])
self.layer4 = AttentionDownsamplingModule(in_channels_list[1], in_channels_list[1]//2, scale_factor = 2)
self.layer5 = ConvLayer(in_channels_list[1]//2 + in_channels_list[2], in_channels_list[2])
self.layer6 = AttentionDownsamplingModule(in_channels_list[2], in_channels_list[2]//2, scale_factor = 2)
self.layer7 = ConvLayer(in_channels_list[2]//2 + in_channels_list[3], in_channels_list[3])
'''
self.layer8 = AttentionUpsamplingModule(in_channels_list[3], in_channels_list[3])
self.layer9 = ConvLayer(in_channels_list[2] + in_channels_list[3], in_channels_list[2])
self.layer10 = AttentionUpsamplingModule(in_channels_list[2], in_channels_list[2])
self.layer11 = ConvLayer(in_channels_list[1] + in_channels_list[2], in_channels_list[1])
self.layer12 = AttentionUpsamplingModule(in_channels_list[1], in_channels_list[1])
self.layer13 = ConvLayer(in_channels_list[0] + in_channels_list[1], in_channels_list[0])
'''
def forward(self, inputs):
x_c4, x_c3, x_c2, x_c1 = inputs
x_c4 = self.layer1(x_c4)
x_c4_3 = self.layer2(x_c4)
x_c3 = torch.cat([x_c4_3, x_c3], dim=1)
x_c3 = self.layer3(x_c3)
x_c3_2 = self.layer4(x_c3)
x_c2 = torch.cat([x_c3_2, x_c2], dim=1)
x_c2 = self.layer5(x_c2)
x_c2_1 = self.layer6(x_c2)
x_c1 = torch.cat([x_c2_1, x_c1], dim=1)
x_c1 = self.layer7(x_c1)
'''
x_c1_2 = self.layer8(x_c1)
x_c2 = torch.cat([x_c1_2, x_c2], dim=1)
x_c2 = self.layer9(x_c2)
x_c2_3 = self.layer10(x_c2)
x_c3 = torch.cat([x_c2_3, x_c3], dim=1)
x_c3 = self.layer11(x_c3)
x_c3_4 = self.layer12(x_c3)
x_c4 = torch.cat([x_c3_4, x_c4], dim=1)
x_c4 = self.layer13(x_c4)
'''
return [x_c4, x_c3, x_c2, x_c1]
class EVPRefer(nn.Module):
"""Encoder Decoder segmentors.
EncoderDecoder typically consists of backbone, decode_head, auxiliary_head.
Note that auxiliary_head is only used for deep supervision during training,
which could be dumped during inference.
"""
def __init__(self,
sd_path=None,
base_size=512,
token_embed_dim=768,
neck_dim=[320,680,1320,1280],
**args):
super().__init__()
config = OmegaConf.load('./v1-inference.yaml')
config.model.params.ckpt_path = f'{sd_path}'
sd_model = instantiate_from_config(config.model)
self.encoder_vq = sd_model.first_stage_model
self.unet = UNetWrapper(sd_model.model, base_size=base_size)
del sd_model.cond_stage_model
del self.encoder_vq.decoder
for param in self.encoder_vq.parameters():
param.requires_grad = True
self.text_adapter = TextAdapterRefer(text_dim=token_embed_dim)
self.classifier = SimpleDecoding(dims=neck_dim)
self.gamma = nn.Parameter(torch.ones(token_embed_dim) * 1e-4)
self.aggregation = InverseMultiAttentiveFeatureRefinement([320,680,1320,1280])
self.clip_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
for param in self.clip_model.parameters():
param.requires_grad = True
def forward(self, img, sentences):
input_shape = img.shape[-2:]
latents = self.encoder_vq.encode(img).mode()
latents = latents / 4.7164
l_feats = self.clip_model(input_ids=sentences).last_hidden_state
c_crossattn = self.text_adapter(latents, l_feats, self.gamma) # NOTE: here the c_crossattn should be expand_dim as latents
t = torch.ones((img.shape[0],), device=img.device).long()
outs = self.unet(latents, t, c_crossattn=[c_crossattn])
outs = self.aggregation(outs)
x_c1, x_c2, x_c3, x_c4 = outs
x = self.classifier(x_c4, x_c3, x_c2, x_c1)
x = F.interpolate(x, size=input_shape, mode='bilinear', align_corners=True)
return x
def get_latent(self, x):
return self.encoder_vq.encode(x).mode()
|