Spaces:
Running
on
A10G
Running
on
A10G
# ------------------------------------------------------------------------------ | |
# Copyright (c) Microsoft | |
# Licensed under the MIT License. | |
# The deconvolution code is based on Simple Baseline. | |
# (https://github.com/microsoft/human-pose-estimation.pytorch/blob/master/lib/models/pose_resnet.py) | |
# Modified by Zigang Geng ([email protected]). | |
# ------------------------------------------------------------------------------ | |
import torch | |
import torch.nn as nn | |
from timm.models.layers import trunc_normal_, DropPath | |
from mmcv.cnn import (build_conv_layer, build_norm_layer, build_upsample_layer, | |
constant_init, normal_init) | |
from omegaconf import OmegaConf | |
from ldm.util import instantiate_from_config | |
import torch.nn.functional as F | |
from evp.models import UNetWrapper, TextAdapterRefer, FrozenCLIPEmbedder | |
from .miniViT import mViT | |
from .attractor import AttractorLayer, AttractorLayerUnnormed | |
from .dist_layers import ConditionalLogBinomial | |
from .localbins_layers import (Projector, SeedBinRegressor, SeedBinRegressorUnnormed) | |
import os | |
def icnr(x, scale=2, init=nn.init.kaiming_normal_): | |
""" | |
Checkerboard artifact free sub-pixel convolution | |
https://arxiv.org/abs/1707.02937 | |
""" | |
ni,nf,h,w = x.shape | |
ni2 = int(ni/(scale**2)) | |
k = init(torch.zeros([ni2,nf,h,w])).transpose(0, 1) | |
k = k.contiguous().view(ni2, nf, -1) | |
k = k.repeat(1, 1, scale**2) | |
k = k.contiguous().view([nf,ni,h,w]).transpose(0, 1) | |
x.data.copy_(k) | |
class PixelShuffle(nn.Module): | |
""" | |
Real-Time Single Image and Video Super-Resolution | |
https://arxiv.org/abs/1609.05158 | |
""" | |
def __init__(self, n_channels, scale): | |
super(PixelShuffle, self).__init__() | |
self.conv = nn.Conv2d(n_channels, n_channels*(scale**2), kernel_size=1) | |
icnr(self.conv.weight) | |
self.shuf = nn.PixelShuffle(scale) | |
self.relu = nn.ReLU() | |
def forward(self,x): | |
x = self.shuf(self.relu(self.conv(x))) | |
return x | |
class AttentionModule(nn.Module): | |
def __init__(self, in_channels, out_channels): | |
super(AttentionModule, self).__init__() | |
# Convolutional Layers | |
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
# Group Normalization | |
self.group_norm = nn.GroupNorm(20, out_channels) | |
# ReLU Activation | |
self.relu = nn.ReLU() | |
# Spatial Attention | |
self.spatial_attention = nn.Sequential( | |
nn.Conv2d(in_channels, 1, kernel_size=1), | |
nn.Sigmoid() | |
) | |
def forward(self, x): | |
# Apply spatial attention | |
spatial_attention = self.spatial_attention(x) | |
x = x * spatial_attention | |
# Apply convolutional layer | |
x = self.conv1(x) | |
x = self.group_norm(x) | |
x = self.relu(x) | |
return x | |
class AttentionDownsamplingModule(nn.Module): | |
def __init__(self, in_channels, out_channels, scale_factor=2): | |
super(AttentionDownsamplingModule, self).__init__() | |
# Spatial Attention | |
self.spatial_attention = nn.Sequential( | |
nn.Conv2d(in_channels, 1, kernel_size=1), | |
nn.Sigmoid() | |
) | |
# Channel Attention | |
self.channel_attention = nn.Sequential( | |
nn.AdaptiveAvgPool2d(1), | |
nn.Conv2d(in_channels, in_channels // 8, kernel_size=1), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(in_channels // 8, in_channels, kernel_size=1), | |
nn.Sigmoid() | |
) | |
# Convolutional Layers | |
if scale_factor == 2: | |
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
elif scale_factor == 4: | |
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1) | |
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=2, padding=1) | |
# Group Normalization | |
self.group_norm = nn.GroupNorm(20, out_channels) | |
# ReLU Activation | |
self.relu = nn.ReLU(inplace=True) | |
def forward(self, x): | |
# Apply spatial attention | |
spatial_attention = self.spatial_attention(x) | |
x = x * spatial_attention | |
# Apply channel attention | |
channel_attention = self.channel_attention(x) | |
x = x * channel_attention | |
# Apply convolutional layers | |
x = self.conv1(x) | |
x = self.group_norm(x) | |
x = self.relu(x) | |
x = self.conv2(x) | |
x = self.group_norm(x) | |
x = self.relu(x) | |
return x | |
class AttentionUpsamplingModule(nn.Module): | |
def __init__(self, in_channels, out_channels): | |
super(AttentionUpsamplingModule, self).__init__() | |
# Spatial Attention for outs[2] | |
self.spatial_attention = nn.Sequential( | |
nn.Conv2d(in_channels, 1, kernel_size=1), | |
nn.Sigmoid() | |
) | |
# Channel Attention for outs[2] | |
self.channel_attention = nn.Sequential( | |
nn.AdaptiveAvgPool2d(1), | |
nn.Conv2d(in_channels, in_channels // 8, kernel_size=1), | |
nn.ReLU(), | |
nn.Conv2d(in_channels // 8, in_channels, kernel_size=1), | |
nn.Sigmoid() | |
) | |
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
# Group Normalization | |
self.group_norm = nn.GroupNorm(20, out_channels) | |
# ReLU Activation | |
self.relu = nn.ReLU() | |
self.upscale = PixelShuffle(in_channels, 2) | |
def forward(self, x): | |
# Apply spatial attention | |
spatial_attention = self.spatial_attention(x) | |
x = x * spatial_attention | |
# Apply channel attention | |
channel_attention = self.channel_attention(x) | |
x = x * channel_attention | |
# Apply convolutional layers | |
x = self.conv1(x) | |
x = self.group_norm(x) | |
x = self.relu(x) | |
x = self.conv2(x) | |
x = self.group_norm(x) | |
x = self.relu(x) | |
# Upsample | |
x = self.upscale(x) | |
return x | |
class ConvLayer(nn.Module): | |
def __init__(self, in_channels, out_channels): | |
super(ConvLayer, self).__init__() | |
self.conv1 = nn.Sequential( | |
nn.Conv2d(in_channels, out_channels, 1), | |
nn.GroupNorm(20, out_channels), | |
nn.ReLU(), | |
) | |
def forward(self, x): | |
x = self.conv1(x) | |
return x | |
class InverseMultiAttentiveFeatureRefinement(nn.Module): | |
def __init__(self, in_channels_list): | |
super(InverseMultiAttentiveFeatureRefinement, self).__init__() | |
self.layer1 = AttentionModule(in_channels_list[0], in_channels_list[0]) | |
self.layer2 = AttentionDownsamplingModule(in_channels_list[0], in_channels_list[0]//2, scale_factor = 2) | |
self.layer3 = ConvLayer(in_channels_list[0]//2 + in_channels_list[1], in_channels_list[1]) | |
self.layer4 = AttentionDownsamplingModule(in_channels_list[1], in_channels_list[1]//2, scale_factor = 2) | |
self.layer5 = ConvLayer(in_channels_list[1]//2 + in_channels_list[2], in_channels_list[2]) | |
self.layer6 = AttentionDownsamplingModule(in_channels_list[2], in_channels_list[2]//2, scale_factor = 2) | |
self.layer7 = ConvLayer(in_channels_list[2]//2 + in_channels_list[3], in_channels_list[3]) | |
''' | |
self.layer8 = AttentionUpsamplingModule(in_channels_list[3], in_channels_list[3]) | |
self.layer9 = ConvLayer(in_channels_list[2] + in_channels_list[3], in_channels_list[2]) | |
self.layer10 = AttentionUpsamplingModule(in_channels_list[2], in_channels_list[2]) | |
self.layer11 = ConvLayer(in_channels_list[1] + in_channels_list[2], in_channels_list[1]) | |
self.layer12 = AttentionUpsamplingModule(in_channels_list[1], in_channels_list[1]) | |
self.layer13 = ConvLayer(in_channels_list[0] + in_channels_list[1], in_channels_list[0]) | |
''' | |
def forward(self, inputs): | |
x_c4, x_c3, x_c2, x_c1 = inputs | |
x_c4 = self.layer1(x_c4) | |
x_c4_3 = self.layer2(x_c4) | |
x_c3 = torch.cat([x_c4_3, x_c3], dim=1) | |
x_c3 = self.layer3(x_c3) | |
x_c3_2 = self.layer4(x_c3) | |
x_c2 = torch.cat([x_c3_2, x_c2], dim=1) | |
x_c2 = self.layer5(x_c2) | |
x_c2_1 = self.layer6(x_c2) | |
x_c1 = torch.cat([x_c2_1, x_c1], dim=1) | |
x_c1 = self.layer7(x_c1) | |
''' | |
x_c1_2 = self.layer8(x_c1) | |
x_c2 = torch.cat([x_c1_2, x_c2], dim=1) | |
x_c2 = self.layer9(x_c2) | |
x_c2_3 = self.layer10(x_c2) | |
x_c3 = torch.cat([x_c2_3, x_c3], dim=1) | |
x_c3 = self.layer11(x_c3) | |
x_c3_4 = self.layer12(x_c3) | |
x_c4 = torch.cat([x_c3_4, x_c4], dim=1) | |
x_c4 = self.layer13(x_c4) | |
''' | |
return [x_c4, x_c3, x_c2, x_c1] | |
class EVPDepthEncoder(nn.Module): | |
def __init__(self, out_dim=1024, ldm_prior=[320, 680, 1320+1280], sd_path=None, text_dim=768, | |
dataset='nyu', caption_aggregation=False | |
): | |
super().__init__() | |
self.layer1 = nn.Sequential( | |
nn.Conv2d(ldm_prior[0], ldm_prior[0], 3, stride=2, padding=1), | |
nn.GroupNorm(16, ldm_prior[0]), | |
nn.ReLU(), | |
nn.Conv2d(ldm_prior[0], ldm_prior[0], 3, stride=2, padding=1), | |
) | |
self.layer2 = nn.Sequential( | |
nn.Conv2d(ldm_prior[1], ldm_prior[1], 3, stride=2, padding=1), | |
) | |
self.out_layer = nn.Sequential( | |
nn.Conv2d(sum(ldm_prior), out_dim, 1), | |
nn.GroupNorm(16, out_dim), | |
nn.ReLU(), | |
) | |
self.aggregation = InverseMultiAttentiveFeatureRefinement([320, 680, 1320, 1280]) | |
self.apply(self._init_weights) | |
### stable diffusion layers | |
config = OmegaConf.load('./v1-inference.yaml') | |
if sd_path is None: | |
if os.path.exists('../checkpoints/v1-5-pruned-emaonly.ckpt'): | |
config.model.params.ckpt_path = '../checkpoints/v1-5-pruned-emaonly.ckpt' | |
else: | |
config.model.params.ckpt_path = None | |
else: | |
config.model.params.ckpt_path = f'../{sd_path}' | |
sd_model = instantiate_from_config(config.model) | |
self.encoder_vq = sd_model.first_stage_model | |
self.unet = UNetWrapper(sd_model.model, use_attn=True) | |
if dataset == 'kitti': | |
self.unet = UNetWrapper(sd_model.model, use_attn=True, base_size=384) | |
del sd_model.cond_stage_model | |
del self.encoder_vq.decoder | |
del self.unet.unet.diffusion_model.out | |
del self.encoder_vq.post_quant_conv.weight | |
del self.encoder_vq.post_quant_conv.bias | |
for param in self.encoder_vq.parameters(): | |
param.requires_grad = True | |
self.text_adapter = TextAdapterRefer(text_dim=text_dim) | |
self.gamma = nn.Parameter(torch.ones(text_dim) * 1e-4) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
if caption_aggregation: | |
class_embeddings = torch.load(f'{dataset}_class_embeddings_my_captions.pth', map_location=device) | |
#class_embeddings_list = [value['class_embeddings'] for key, value in class_embeddings.items()] | |
#stacked_embeddings = torch.stack(class_embeddings_list, dim=0) | |
#class_embeddings = torch.mean(stacked_embeddings, dim=0).unsqueeze(0) | |
if 'aggregated' in class_embeddings: | |
class_embeddings = class_embeddings['aggregated'] | |
else: | |
clip_model = FrozenCLIPEmbedder(max_length=40,pool=False).to(device) | |
class_embeddings_new = [clip_model.encode(value['caption'][0]) for key, value in class_embeddings.items()] | |
class_embeddings_new = torch.mean(torch.stack(class_embeddings_new, dim=0), dim=0) | |
class_embeddings['aggregated'] = class_embeddings_new | |
torch.save(class_embeddings, f'{dataset}_class_embeddings_my_captions.pth') | |
class_embeddings = class_embeddings['aggregated'] | |
self.register_buffer('class_embeddings', class_embeddings) | |
else: | |
self.class_embeddings = torch.load(f'{dataset}_class_embeddings_my_captions.pth', map_location=device) | |
self.clip_model = FrozenCLIPEmbedder(max_length=40,pool=False) | |
for param in self.clip_model.parameters(): | |
param.requires_grad = True | |
#if dataset == 'kitti': | |
# self.text_adapter_ = TextAdapterRefer(text_dim=text_dim) | |
# self.gamma_ = nn.Parameter(torch.ones(text_dim) * 1e-4) | |
self.caption_aggregation = caption_aggregation | |
self.dataset = dataset | |
def _init_weights(self, m): | |
if isinstance(m, (nn.Conv2d, nn.Linear)): | |
trunc_normal_(m.weight, std=.02) | |
nn.init.constant_(m.bias, 0) | |
def forward_features(self, feats): | |
x = self.ldm_to_net[0](feats[0]) | |
for i in range(3): | |
if i > 0: | |
x = x + self.ldm_to_net[i](feats[i]) | |
x = self.layers[i](x) | |
x = self.upsample_layers[i](x) | |
return self.out_conv(x) | |
def forward(self, x, class_ids=None, img_paths=None): | |
latents = self.encoder_vq.encode(x).mode() | |
# add division by std | |
if self.dataset == 'nyu': | |
latents = latents / 5.07543 | |
elif self.dataset == 'kitti': | |
latents = latents / 4.6211 | |
else: | |
print('Please calculate the STD for the dataset!') | |
if class_ids is not None: | |
if self.caption_aggregation: | |
class_embeddings = self.class_embeddings[[0]*len(class_ids.tolist())]#[class_ids.tolist()] | |
else: | |
class_embeddings = [] | |
for img_path in img_paths: | |
class_embeddings.extend([value['caption'][0] for key, value in self.class_embeddings.items() if key in img_path.replace('//', '/')]) | |
class_embeddings = self.clip_model.encode(class_embeddings) | |
else: | |
class_embeddings = self.class_embeddings | |
c_crossattn = self.text_adapter(latents, class_embeddings, self.gamma) | |
t = torch.ones((x.shape[0],), device=x.device).long() | |
#if self.dataset == 'kitti': | |
# c_crossattn_last = self.text_adapter_(latents, class_embeddings, self.gamma_) | |
# outs = self.unet(latents, t, c_crossattn=[c_crossattn, c_crossattn_last]) | |
#else: | |
outs = self.unet(latents, t, c_crossattn=[c_crossattn]) | |
outs = self.aggregation(outs) | |
feats = [outs[0], outs[1], torch.cat([outs[2], F.interpolate(outs[3], scale_factor=2)], dim=1)] | |
x = torch.cat([self.layer1(feats[0]), self.layer2(feats[1]), feats[2]], dim=1) | |
return self.out_layer(x) | |
def get_latent(self, x): | |
return self.encoder_vq.encode(x).mode() | |
class EVPDepth(nn.Module): | |
def __init__(self, args=None, caption_aggregation=False): | |
super().__init__() | |
self.max_depth = args.max_depth | |
self.min_depth = args.min_depth_eval | |
embed_dim = 192 | |
channels_in = embed_dim*8 | |
channels_out = embed_dim | |
if args.dataset == 'nyudepthv2': | |
self.encoder = EVPDepthEncoder(out_dim=channels_in, dataset='nyu', caption_aggregation=caption_aggregation) | |
else: | |
self.encoder = EVPDepthEncoder(out_dim=channels_in, dataset='kitti', caption_aggregation=caption_aggregation) | |
self.decoder = Decoder(channels_in, channels_out, args) | |
self.decoder.init_weights() | |
self.mViT = False | |
self.custom = False | |
if not self.mViT and not self.custom: | |
n_bins = 64 | |
bin_embedding_dim = 128 | |
num_out_features = [32, 32, 32, 192] | |
min_temp = 0.0212 | |
max_temp = 50 | |
btlnck_features = 256 | |
n_attractors = [16, 8, 4, 1] | |
attractor_alpha = 1000 | |
attractor_gamma = 2 | |
attractor_kind = "mean" | |
attractor_type = "inv" | |
self.bin_centers_type = "softplus" | |
self.bottle_neck = nn.Sequential( | |
nn.Conv2d(channels_in, btlnck_features, kernel_size=3, stride=1, padding=1), | |
nn.ReLU(inplace=False), | |
nn.Conv2d(btlnck_features, btlnck_features, kernel_size=3, stride=1, padding=1)) | |
for m in self.bottle_neck.modules(): | |
if isinstance(m, nn.Conv2d): | |
normal_init(m, std=0.001, bias=0) | |
SeedBinRegressorLayer = SeedBinRegressorUnnormed | |
Attractor = AttractorLayerUnnormed | |
self.seed_bin_regressor = SeedBinRegressorLayer( | |
btlnck_features, n_bins=n_bins, min_depth=self.min_depth, max_depth=self.max_depth) | |
self.seed_projector = Projector(btlnck_features, bin_embedding_dim) | |
self.projectors = nn.ModuleList([ | |
Projector(num_out, bin_embedding_dim) | |
for num_out in num_out_features | |
]) | |
self.attractors = nn.ModuleList([ | |
Attractor(bin_embedding_dim, n_bins, n_attractors=n_attractors[i], min_depth=self.min_depth, max_depth=self.max_depth, | |
alpha=attractor_alpha, gamma=attractor_gamma, kind=attractor_kind, attractor_type=attractor_type) | |
for i in range(len(num_out_features)) | |
]) | |
last_in = 192 + 1 | |
self.conditional_log_binomial = ConditionalLogBinomial( | |
last_in, bin_embedding_dim, n_classes=n_bins, min_temp=min_temp, max_temp=max_temp) | |
elif self.mViT and not self.custom: | |
n_bins = 256 | |
self.adaptive_bins_layer = mViT(192, n_query_channels=192, patch_size=16, | |
dim_out=n_bins, | |
embedding_dim=192, norm='linear') | |
self.conv_out = nn.Sequential(nn.Conv2d(192, n_bins, kernel_size=1, stride=1, padding=0), | |
nn.Softmax(dim=1)) | |
def forward(self, x, class_ids=None, img_paths=None): | |
b, c, h, w = x.shape | |
x = x*2.0 - 1.0 # normalize to [-1, 1] | |
if h == 480 and w == 480: | |
new_x = torch.zeros(b, c, 512, 512, device=x.device) | |
new_x[:, :, 0:480, 0:480] = x | |
x = new_x | |
elif h==352 and w==352: | |
new_x = torch.zeros(b, c, 384, 384, device=x.device) | |
new_x[:, :, 0:352, 0:352] = x | |
x = new_x | |
elif h == 512 and w == 512: | |
pass | |
else: | |
print(h,w) | |
raise NotImplementedError | |
conv_feats = self.encoder(x, class_ids, img_paths) | |
if h == 480 or h == 352: | |
conv_feats = conv_feats[:, :, :-1, :-1] | |
self.decoder.remove_hooks() | |
out_depth, out, x_blocks = self.decoder([conv_feats]) | |
if not self.mViT and not self.custom: | |
x = self.bottle_neck(conv_feats) | |
_, seed_b_centers = self.seed_bin_regressor(x) | |
if self.bin_centers_type == 'normed' or self.bin_centers_type == 'hybrid2': | |
b_prev = (seed_b_centers - self.min_depth) / \ | |
(self.max_depth - self.min_depth) | |
else: | |
b_prev = seed_b_centers | |
prev_b_embedding = self.seed_projector(x) | |
for projector, attractor, x in zip(self.projectors, self.attractors, x_blocks): | |
b_embedding = projector(x) | |
b, b_centers = attractor( | |
b_embedding, b_prev, prev_b_embedding, interpolate=True) | |
b_prev = b.clone() | |
prev_b_embedding = b_embedding.clone() | |
rel_cond = torch.sigmoid(out_depth) * self.max_depth | |
# concat rel depth with last. First interpolate rel depth to last size | |
rel_cond = nn.functional.interpolate( | |
rel_cond, size=out.shape[2:], mode='bilinear', align_corners=True) | |
last = torch.cat([out, rel_cond], dim=1) | |
b_embedding = nn.functional.interpolate( | |
b_embedding, last.shape[-2:], mode='bilinear', align_corners=True) | |
x = self.conditional_log_binomial(last, b_embedding) | |
# Now depth value is Sum px * cx , where cx are bin_centers from the last bin tensor | |
b_centers = nn.functional.interpolate( | |
b_centers, x.shape[-2:], mode='bilinear', align_corners=True) | |
out_depth = torch.sum(x * b_centers, dim=1, keepdim=True) | |
elif self.mViT and not self.custom: | |
bin_widths_normed, range_attention_maps = self.adaptive_bins_layer(out) | |
out = self.conv_out(range_attention_maps) | |
bin_widths = (self.max_depth - self.min_depth) * bin_widths_normed # .shape = N, dim_out | |
bin_widths = nn.functional.pad(bin_widths, (1, 0), mode='constant', value=self.min_depth) | |
bin_edges = torch.cumsum(bin_widths, dim=1) | |
centers = 0.5 * (bin_edges[:, :-1] + bin_edges[:, 1:]) | |
n, dout = centers.size() | |
centers = centers.view(n, dout, 1, 1) | |
out_depth = torch.sum(out * centers, dim=1, keepdim=True) | |
else: | |
out_depth = torch.sigmoid(out_depth) * self.max_depth | |
return {'pred_d': out_depth} | |
class Decoder(nn.Module): | |
def __init__(self, in_channels, out_channels, args): | |
super().__init__() | |
self.deconv = args.num_deconv | |
self.in_channels = in_channels | |
embed_dim = 192 | |
channels_in = embed_dim*8 | |
channels_out = embed_dim | |
self.deconv_layers, self.intermediate_results = self._make_deconv_layer( | |
args.num_deconv, | |
args.num_filters, | |
args.deconv_kernels, | |
) | |
self.last_layer_depth = nn.Sequential( | |
nn.Conv2d(channels_out, channels_out, kernel_size=3, stride=1, padding=1), | |
nn.ReLU(inplace=False), | |
nn.Conv2d(channels_out, 1, kernel_size=3, stride=1, padding=1)) | |
for m in self.last_layer_depth.modules(): | |
if isinstance(m, nn.Conv2d): | |
normal_init(m, std=0.001, bias=0) | |
conv_layers = [] | |
conv_layers.append( | |
build_conv_layer( | |
dict(type='Conv2d'), | |
in_channels=args.num_filters[-1], | |
out_channels=out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1)) | |
conv_layers.append( | |
build_norm_layer(dict(type='BN'), out_channels)[1]) | |
conv_layers.append(nn.ReLU()) | |
self.conv_layers = nn.Sequential(*conv_layers) | |
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False) | |
def forward(self, conv_feats): | |
out = self.deconv_layers(conv_feats[0]) | |
out = self.conv_layers(out) | |
out = self.up(out) | |
self.intermediate_results.append(out) | |
out = self.up(out) | |
out_depth = self.last_layer_depth(out) | |
return out_depth, out, self.intermediate_results | |
def _make_deconv_layer(self, num_layers, num_filters, num_kernels): | |
"""Make deconv layers.""" | |
layers = [] | |
in_planes = self.in_channels | |
intermediate_results = [] # List to store intermediate feature maps | |
for i in range(num_layers): | |
kernel, padding, output_padding = \ | |
self._get_deconv_cfg(num_kernels[i]) | |
planes = num_filters[i] | |
layers.append( | |
build_upsample_layer( | |
dict(type='deconv'), | |
in_channels=in_planes, | |
out_channels=planes, | |
kernel_size=kernel, | |
stride=2, | |
padding=padding, | |
output_padding=output_padding, | |
bias=False)) | |
layers.append(nn.BatchNorm2d(planes)) | |
layers.append(nn.ReLU()) | |
in_planes = planes | |
# Add a hook to store the intermediate result | |
layers[-1].register_forward_hook(self._hook_fn(intermediate_results)) | |
return nn.Sequential(*layers), intermediate_results | |
def _hook_fn(self, intermediate_results): | |
def hook(module, input, output): | |
intermediate_results.append(output) | |
return hook | |
def remove_hooks(self): | |
self.intermediate_results.clear() | |
def _get_deconv_cfg(self, deconv_kernel): | |
"""Get configurations for deconv layers.""" | |
if deconv_kernel == 4: | |
padding = 1 | |
output_padding = 0 | |
elif deconv_kernel == 3: | |
padding = 1 | |
output_padding = 1 | |
elif deconv_kernel == 2: | |
padding = 0 | |
output_padding = 0 | |
else: | |
raise ValueError(f'Not supported num_kernels ({deconv_kernel}).') | |
return deconv_kernel, padding, output_padding | |
def init_weights(self): | |
"""Initialize model weights.""" | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
normal_init(m, std=0.001, bias=0) | |
elif isinstance(m, nn.BatchNorm2d): | |
constant_init(m, 1) | |
elif isinstance(m, nn.ConvTranspose2d): | |
normal_init(m, std=0.001) | |